Skip to main content

Cracking and Fracture of Concrete: Size Effect or Scaling Law?

  • Chapter
Disorder and Fracture

Part of the book series: NATO ASI Series ((NSSB,volume 204))

  • 191 Accesses

Abstract

In all concrete, reinforced concrete (RC), or even prestressed concrete (PC) structures, concrete is cracked, in its normal state. This (normal) cracking is due both to physical processes (thermal and/or hygral shrink) and mechanical loading.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Z.P. Bazant, H. Ohtsubo and K. Aoh, Stability and post-critical growth ofa system of cooling or shrinkage cracks, International Journal of Fracture, 15, pp. 443, (1979).

    Article  Google Scholar 

  2. P. Acker, Comportement mécanique du béton: apports de l’approche physico-chimique, Rapport de Recherche, LCPC, n°152, (1988).

    Google Scholar 

  3. Y. Goto, Cracks formed in concrete around deformed tension bars, ACI Journal, 68, 244, (1971).

    Google Scholar 

  4. Q.S. Nguyen, Méthodes énergétiques en mécanique de la rupture, J.M.T.A., 19, 363, (1980).

    MATH  Google Scholar 

  5. J.R. Rice, Mathematical analysis in the mechanics of fracture, Liebowitz ed., 2, 191, (1968).

    Google Scholar 

  6. V.M. Entov and V.I. Yagust, Experimental investigation of laws governingquasi-static development of macrocracks in concrete, I 2V AN SSSR Mekhanika, Tverdogo Tela, 10, 93, (1975).

    Google Scholar 

  7. P. Rossi, Fissuration du béton: dumatériau à la structure. Application dela mécanique linéaire de la rupture, Thèse de l’E.N.P.C., Rapport de recherche LPC 150, (1988).

    Google Scholar 

  8. Y.V. Zaitsev and F.H. Wittmann, Simulation of crack propagation and failure of concrete, Materials and Structures, 14, 357, (1981).

    Google Scholar 

  9. A. Hillerborg, M. Modeer and P.E. Petersson, Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements, Cement and Concrete Research, 6, 773, (1976).

    Article  Google Scholar 

  10. P.E. Roelfstra and H. Sadouki, Total fracture energy of composite materials, Vorträge der 17. Sitzung des Arbeitskreises Bruchvorgänge, Ed.Deustcher Verband für Materialprüfung, Berlin, 357, (1985).

    Google Scholar 

  11. Z.P. Baant and B.H. Oh, Crack band theory for fracture of concrete, Materials and Structures, 16, 155, (1983).

    Google Scholar 

  12. J. Mazars, Application de la mécanique de l’endommagementau comportement non linéaireet à la rupture du béton de structure, Ph. D. Thesis, Université Paris 6, (1984).

    Google Scholar 

  13. C. Saouridis, Identification et numérisation objectives des comportements adoucissants: une approche multiéchelle de l’endommagement du béton, Ph. D. Thesis, Université Paris 6, (1989).

    Google Scholar 

  14. A.S. Jayatilaka, Fracture of engineering brittlematerial, Applied Science Publisher, London, (1979).

    Google Scholar 

  15. L. Sentier, A stochastic model of concrete strength, Mémoire AIPC, IABSE Proceedings, 125, (1985).

    Google Scholar 

  16. H. Mihashi and M. Izumi, A stochastic theory of concrete fracture, Cement and Concrete Research, 7, 411, (1977).

    Article  Google Scholar 

  17. N.J. Burt and J.W. Dougill, Progressive failurein a heterogeneous medium, J. of Eng. Mech. Div., 365, (1977).

    Google Scholar 

  18. H. Schorn, Numerical simulation of compositematerial as concrete, in Fracture Toughness and Fracture Energy of Concrete, F.H. Wittmann ed., Elsevier, (1986).

    Google Scholar 

  19. P.Rossi and S. Richer, Numerical modelling of concrete cracking based ona stochastic approach, Materials and Structures, 20, 334, (1987).

    Article  Google Scholar 

  20. D. Breysse, A Probabilistic Model for Damage of Concrete Structures, Brittle Matrix Composite 2, Cedzyna Poland, Elsevier publ., 20, (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Acker, P., Rossi, P., Torrenti, JM. (1990). Cracking and Fracture of Concrete: Size Effect or Scaling Law?. In: Charmet, J.C., Roux, S., Guyon, E. (eds) Disorder and Fracture. NATO ASI Series, vol 204. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6864-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6864-3_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-43576-8

  • Online ISBN: 978-1-4615-6864-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics