Skip to main content

Fracture Mechanics and Solid Adhesion

  • Chapter

Part of the book series: NATO ASI Series ((NSSB,volume 204))

Abstract

The forces insuring the adhesion between two solids are the same as those insuring cohesion of solids i.e. Van der Waals, metallic, covalent, ionic. Fig.(1) displays the potential and the force of interaction between two half-spaces for Van der Waals forces. When the separation increases from the interatomic equilibrium distance Z 0, the attraction force increases up to a maximum, the theoretical strength σ th , and then decreases. The work needed to completely separate the two halfspaces is two times the surface energy γ if they are identical, or the Dupré energy of adhesion ω = γ1 + γ2 – γ12 if they are different (γ12 is the interfacial energy of the two solids in contact).

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Kendall, The adhesion and surface energy of elastic solids, J. Phys. D, 4, 1186, (1971).

    Article  ADS  Google Scholar 

  2. K.L. Johnson, K. Kendall and A.D. Roberts, Surface energy and the contact of elastic solids, Proc. Roy. Soc., A324, 301, (1971).

    Article  Google Scholar 

  3. D. Maugis and M. Barquins, Fracture mechanics and the adherence of viscoelastic bodies, J. Phys. D, 11, 1989, (1978).

    Google Scholar 

  4. C.E. Inglis, Stresses in a plate due to the presence of cracks and sharp corners, Trans. Inst. Nat. Archit., 55, 219, (1913)

    Google Scholar 

  5. K.J. Chang and H.C. Wu, Angled elliptic notch problem under biaxial loading, J. Appl. Mech., 47, 57, (1980).

    Article  ADS  MATH  Google Scholar 

  6. I.N. Sneddon, The distribution of stress in the neighbourhood of a crack in an elastic solid, Proc. Roy. Soc., A187, 229, (1946).

    Article  MathSciNet  Google Scholar 

  7. H. Kuppers, Die numerische berechnung der spannungsverteilung in der umgebung einer kerbspitze, Glastech. Ber., 37, 185, (1964).

    Google Scholar 

  8. M. Barquins and D. Maugis, Adhesive contact of axisymmetric punches on an elastic half-space: the modified Hertz-Hubert’s stress tensor for contacting spheres, J. Meca. Theor. Appl., 1, 331, (1982).

    MATH  Google Scholar 

  9. G.I. Barenblatt, The mathematical theory of equilibrium cracks in brittle fracture, Adv. Appl. Mech., 7, 55, (1962).

    MathSciNet  Google Scholar 

  10. D. Mc Lean, in Grain boundaries in metals, Clarendon, Oxford, 299, (1957).

    Google Scholar 

  11. B.R. Lawn, D.H. Roach and R.M. Thomson, Thresholds and reversibility in brittle cracks: an atomistic surface force model, J. Mat. Sci., 22, 4036, (1987).

    Article  ADS  Google Scholar 

  12. H.K. Mueller and W.G. Knauss, The fracture energy and some mechanical properties of a polyurethane elastomer, Trans. Soc. Rheol., 15, 217, (1971).

    Article  ADS  Google Scholar 

  13. E.H. Andrews and A.J. Kinloch, Mechanics of adhesive failure, Proc. Roy. Soc., A332, 385, (1973).

    Article  Google Scholar 

  14. A.N. Gent and J. Schultz, Effect of wetting liquids on the strength of adhesion of viscoelastic materials, J. Adhesion, 3, 281, (1972).

    Article  Google Scholar 

  15. L. Mullins, Rupture of rubber, Part IX. Role of hysteresis in the tearing of rubber, Trans. Inst. Rubber Ind., 35, 213, (1959).

    Google Scholar 

  16. D. Maugis, M. Barquins, Adhesive contact of sectionally smooth-ended punches on elastic half-spaces: theory and experiments, J. Phys. D, 16, 1843, (1983).

    Article  ADS  Google Scholar 

  17. M. Barquins, Kinetics of the spontaneous peeling of elastomers, J. Appl. Polym. Sci., 29, 3269, (1984).

    Article  Google Scholar 

  18. M. Barquins, Influence of the stiffness of testing machine on the adherence of elastomers, J. Appl. Polymer. Sci., 28, 2647, (1983).

    Article  Google Scholar 

  19. K. Kendall, Shrinkage and peel strength of adhesive joints, J. Phys. D, 6, 1782, (1973).

    Article  ADS  Google Scholar 

  20. A.D. Roberts, Looking at rubber adhesion, Rubber Chem. Technol., 52, 23, (1979).

    Google Scholar 

  21. M. Barquins and D. Maugis, Tackiness of elastomers, J. Adhesion., 13, 53, (1981).

    Article  Google Scholar 

  22. D. Maugis, Adherence of solids in Microscopic aspects of adhesion and lubrication, J.M. Georges ed., Elsevier, Amsterdam, 221, (1982).

    Google Scholar 

  23. G.P. Marshall, L.H. Coutts and J.G. Williams, Temperature effects in the fracture of PMMA, J. Mater. Sci., 9, 1409, (1974).

    Article  ADS  Google Scholar 

  24. R.M. Hill and L.A. Dissado, Relaxation in elastic and viscoelastic materials, J. Mater. Sci., 19, 1576, (1984).

    Article  ADS  Google Scholar 

  25. R.S. Rivlin and A.G. Thomas, Rupture of rubber I. Characteristic energy for tearing, J. Polym. Sci., 10, 291, (1953).

    Article  ADS  Google Scholar 

  26. R.D. Margolis, R.W. Dunlap and H. Markovitz, Fracture toughness testing of glassy plastics in Cracks and fracture, ASTM STP 601, Philadelphia, 391, (1976).

    Google Scholar 

  27. D. Maugis, Subcritical crack growth, surface energy, fracture toughness, stick-slip and embrittlement, J. Mater. Sci., 20, 3041, (1985).

    Article  ADS  Google Scholar 

  28. T. Kobayashi and J.W. Dally, A system of modified epoxies for dynamic photoelastic studies of fracture, Exp. Mech., 17, 367, (1977).

    Article  Google Scholar 

  29. A.B.J. Clark and G.R. Irwin, Crack propagation behaviors, Exp. Mech., 6, 321, (1966).

    Article  Google Scholar 

  30. J.G. Williams, J.C. Radon and C.E. Turner, Designing against fracture in brittle plastics, Polym. Eng. Sci., 4, 130, (1968).

    Google Scholar 

  31. J.G. Williams, Fracture mechanics of polymers, Ellis Horwood, New York (1984).

    Google Scholar 

  32. S. Yamini and R.J. Young, Crack propagation in and factography of epoxy resins, J. Mater. Sci., 14, 1609, (1979).

    Article  ADS  Google Scholar 

  33. D. W. Aubrey and M. Sherrif, Peel adhesion and viscoelasticity of rubber-resin blends, J. Polym. Sci. Polym. Chem. Ed., 18, 2597, (1980).

    Google Scholar 

  34. M. Barquins, B. Khandani and D. Maugis, Propagation saccadée de fissure dans le pelage d’un solide viscoélastique, C. R. Acad. Sci. (Paris), Ser. II, 303, 1517, (1986).

    Google Scholar 

  35. D. Maugis, Propagation saccadée de fissure en pelage, rôle de l’inertie, C. R. Acad. Sci. (Paris), Ser. II, 304, 775, (1987).

    MATH  MathSciNet  Google Scholar 

  36. D. Maugis and M. Barquins, Stick-slip and peeling of adhesive tapes in Adhesion 12, K.W. Allen ed., Elsevier, London, 205, (1988).

    Google Scholar 

  37. N. Minorsky, Non linear oscillations, Van Nostrand, New York (1962).

    Google Scholar 

  38. D.W. Jordan and P. Smith, Non linear ordinary differential equations, Clarendon Press, Oxford, (1977).

    Google Scholar 

  39. A. Carre and J. Schultz, Polymer-Aluminium adhesion IV. Kinetic aspects of the effect of a liquid environment, J. Adhesion, 18, 207, (1985).

    Article  Google Scholar 

  40. T.A. Michalske and V.D. Frechette, Dynamic effect of liquids on crack growth leading to catastrophic failure in glass, J. Amer. Ceram. Soc., 63, 603, (1980).

    Article  Google Scholar 

  41. S.M. Wiederhorn, Influence of water vapor on crack propagation on soda-lime glass, J. Am. Ceram. Soc., 50, 407, (1967).

    Article  Google Scholar 

  42. S.M. Wiederhorn, S.M. Freiman, E.R. Fuller and C.J. Simmons, Effects of water and other dielectrics on crack growth, J. Mater. Sci., 17, 3460, (1982).

    Article  ADS  Google Scholar 

  43. D. Maugis, Subcritical crack growth, surface energy and fracture toughness of brittle materials in Fracture mechanics of ceramics, R.C. Bradt, A.G. Evans, D.P.H. Hasselman and FF. Lange eds., Plenum PuLl., New York, vol.8, 255, (1986).

    Google Scholar 

  44. D. Maugis, M. Barquins, Adherence d’une bille de verre sur un massif viscoélastique: étude du recollement, C.R. Acad. Sci., (Paris), Ser. B, 287, 49, (1978).

    Google Scholar 

  45. M. Barquins, Adhesive contact and kinetics of adherence between a rigid sphere and an elastomeric solid, Int. J. Adhesion and Adhesives., 3, 71, (1983).

    Article  Google Scholar 

  46. M. Barquins and D. Wehbi, Study of adherence of elastomers by cyclic unloading experiments, J. Adhesion, 20, 55, (1986).

    Article  Google Scholar 

  47. A. Ahagon and A.N. Gent, Effect of interfacial bonding on the strength of adhesion, J. Polym. Sci., 13, 1285, (1975).

    Google Scholar 

  48. R.J. Chang and A.N. Gent, Effect on interfacial bonding on the strength of elastomers. I. Self-adhesion, J. Polym. Sci., 19, 1619, (1981).

    Google Scholar 

  49. A.N. Gent, The strength of adhesive bonds. An examination of interfacial chemistry, Theology of materials, and fracture mechanics, Adhesive age, 27, (Feb. 1982).

    Google Scholar 

  50. G.L. Lake and A. Stevenson, On the mechanics of peeling in Adhesion 6, K.W. Allen, ed., Applied Science Publ., London, 41, (1982).

    Google Scholar 

  51. G.J. Lake, Influence of the strength of interfacial bonding on the fracture characteristics of adhesive joints, Inter. Adhesion Conf. Nottingham 1984, The Plastic and Rubber Institute, 22. 1, (1984).

    MathSciNet  Google Scholar 

  52. W.V. Titow, Solvent welding of plastics in Adhesion 2, K.W. Allen, ed.), Appl. Sc. Publ., London, 181, (1978).

    Google Scholar 

  53. K. Jud, H.H. Kausch and J.G. Williams, Fracture mechanics studies of crack healing and welding of polymers, J. Mater. Sci., 16, 204, (1981).

    Article  ADS  Google Scholar 

  54. P.G. de Gennes, Sur la soudure des polymères amorphes, C. R. Acad. Sci., (Paris), Ser.B, 291, 219, (1980).

    Google Scholar 

  55. P.G. de Gennes, The formation of polymer/polymer junctions in Microscopic aspects of adhesion and lubrication, J.M. Georges, ed., Elsevier, Amsterdam, 335, (1982).

    Google Scholar 

  56. P.G. de Gennes, Adhesion: une liste de questions in Adsorption and Adhesion, 5ème école d’été meditérranéenne ed., Les Editions de Physique, Paris, 1, (1984).

    Google Scholar 

  57. A.N. Gent and R.H. Tobias, Threshold tear strength of elastomers, J. Polym. Sci., 20, 2051, (1982).

    Google Scholar 

  58. A.E. Lee, The role of elastic deformations in the adhesion of solids, J. Colloid. Interface Sci., 64, 577, (1978).

    Article  Google Scholar 

  59. S.M. Wiederhorn, S.W. Freiman, E.R. Fuller and C.J. Simmons, Effect of water and other dielectric on crack growth, J. Mat. Sci., 17, 3460, (1982).

    Article  ADS  Google Scholar 

  60. L. Bevan, W. Doell and L. Koenczoel, Micromechanics of a craze zone at the tip of a stationary crack, J. Polym. Sci. Part B., 24, 2433, (1986).

    Article  Google Scholar 

  61. E.J. Kramer, Microscopic and molecular fundamentals of crazing, Adv. Polym. Sci., 52/53, 1, (1983).

    Google Scholar 

  62. D.S. Dugdale, Yielding of steel sheets containing slits, J. Mech. Phys. Solids, 8, 100, (1960).

    Article  ADS  Google Scholar 

  63. H.R. Brown and I.M. Ward, Craze shape and fracture in poly(methylmethacrylate), Polymer 14, 469, (1973).

    Article  Google Scholar 

  64. G.P. Morgan and I.M. Ward, Temperature dependence of craze shape and fracture in poly(methylmethacrylate), Polymer, 18, 87, (1977).

    Article  Google Scholar 

  65. R.A.W. Frazer and I.M. Ward, Temperature dependance of craze shape and fracture in polycarbonate, Polymer, 19, 220, (1978).

    Article  Google Scholar 

  66. G. L. Pitman and I.M. Ward, Effect of molecular weight on craze shape and fracture toughness in polycarbonate, Polymer, 20, 895, (1979).

    Article  Google Scholar 

  67. J.P. Berry, Fracture processes in polymeric materials. V. Dependence of the ultimate properties of poly(methylmethacrylate) on molecular weight, J. Polym. Sci. Part A, 2, 4069, (1964).

    Google Scholar 

  68. A.N. Gent and A.G. Thomas, Effect of molecular weight on the tensile strength of glassy plastics, J. Polym. Sci., 10, 571, (1972).

    Google Scholar 

  69. R.P. Kusy and D.T. Turner, Influence of molecular weight of poly(methylmethacrylate) on fracture energy in notched tension, Polym., 17, 161, (1976).

    Article  Google Scholar 

  70. R.P. Kusy and M.J. Katz, Effect of molecular weight on the fracture surface energy of poly(methylmethacrylate) in cleavage, J. Mater. Sci., 11, 1475, (1976).

    Article  ADS  Google Scholar 

  71. R.P. Kusy and M.J. Katz, Generalized theory of the total fracture surface energy of glassy organic polymers, Polymer, 19, 1345, (1978).

    Article  Google Scholar 

  72. P. Prentice, Influence of molecular weight on the fracture ofpoly(methylmethacrylate) (PMMA), Polymer, 24, 344, (1983).

    Article  Google Scholar 

  73. P. Prentice, The influence of molecular weight on the fracture of thermoplastic glassy polymers, J. Mater. Sci., 20, 1445, (1985).

    Article  ADS  Google Scholar 

  74. K.E. Evans, A scaling analysis of the fracture mechanisms in glassy polymers, J. Polym. Sci. Part B, 25, 353, (1987).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Maugis, D. (1990). Fracture Mechanics and Solid Adhesion. In: Charmet, J.C., Roux, S., Guyon, E. (eds) Disorder and Fracture. NATO ASI Series, vol 204. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6864-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6864-3_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-43576-8

  • Online ISBN: 978-1-4615-6864-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics