Skip to main content

Concepts of Organization the Leverage of Ciliate Protozoa

  • Chapter
A Conceptual History of Modern Embryology

Part of the book series: Developmental Biology ((DEBO,volume 7))

Abstract

Biologists have long disputed the question of whether or not one can exploit Protista as technologies to better understand the organization of multicellular organisms. Some have argued that Protozoa must be understood and studied solely in their own terms, not as cells, but as organisms possessing an organization fundamentally different from that of Metazoa. Protozoa represent a world unto themselves having evolved in directions altogether divergent from the typical text-book cell: They are “noncellular” or acellular organisms. Others have argued, to the contrary, that in all its essential details a Protozoon is homologous to a Metazoan cell. Although the term “noncellular” may be used when they were studied entirely on their own, without reference to other forms of life, the term “unicellular” was perfectly applicable to Protozoa when they were compared with multicellular organisms. Still others adopted a middle ground, arguing that though Protozoa show similarities to the basic structure of cells, they have many morphological and physiological characteristics of their own which are not found generally in the cells of Metazoa. In recent years, the question of the uniqueness of Protozoa has arisen anew and moved to the center of controversy in reference to general mechanisms of development and evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes and References

  1. Nanney, D. L., 1984, review of Goodwin, B.C.,Holder, N., and Wylie, C. C., eds., Development and Evolution. British Society for Developmental Biology, Symposium 6. Cambridge University Press, New York, 1983.J.Protozool.31: 365

    Google Scholar 

  2. Frankel, J., 1983, “What are the developmental underpinnings of evolutionary changes in protozoan morphology?” in: Development and Evolution ( B. C. Goodwin, N. Holder and C. C. Wylie, eds.), Cambridge University Press, Cambridge, pp. 279–314.

    Google Scholar 

  3. Smith, J. M., 1983, Evolution and development, in Development and Evolution ( B. C. Goodwin, N. Holder, and C. C. Wylie, eds.), Cambridge University Press, Cambridge, pp. 33–46.

    Google Scholar 

  4. Nanney, 1984.

    Google Scholar 

  5. See Nanney, D. L., 1983, The cytoplasm and the ciliates, J. Hered 74:163–170; Sapp, J., 1986, Inside the cell: Genetic methodology and the case of the cytoplasm, in: The Politics and Rhetoric of Scientific Method (J. A. Schuster and R. R. Yeo, eds.), Reidel, Dordrecht, pp. 167–202; Sapp, J., 1987, Beyond the Gene, Cytoplasmic Inheritance and the Struggle for Authority in Genetics, Oxford University Press, New York; Sapp, J., (in press), Cytoplasmic inheritance and the historiography of genetics, in: Histoire de la genetique (J-L. Fischer and W. Schneider, eds.), Vrin, Paris.

    Google Scholar 

  6. Morgan, T. H., 1926, Genetics and the physiology of development, Am. Nat. 60: 489–515.

    Google Scholar 

  7. See, for example, Beadle, G. W., 1948, Genes and biological enigmas, in: Science in Progress, 6th series (G. A. Baitsell, ed.), Yale University Press, New Haven, pp. 184–248; Muller, H. J., The development of the gene theory, in: Genetics in the Twentieth Century (L. C. Dunn ed.), Macmillan, New York, pp. 77–100; see also Sapp, 1987.

    Google Scholar 

  8. Weismann, A., 1983, The Germ Plasm: A Theory of Heredity, Walter Scott, London, p. xv.

    Google Scholar 

  9. Ibid., p. 11.

    Google Scholar 

  10. Ibid.

    Google Scholar 

  11. Ibid., p. xiv.

    Google Scholar 

  12. Ibid., p. 38.

    Google Scholar 

  13. Ibid., p. xi.

    Google Scholar 

  14. Ibid., p. 22.

    Google Scholar 

  15. Ibid., p. 23.

    Google Scholar 

  16. Ibid., p. 27.

    Google Scholar 

  17. Ibid., p. 29.

    Google Scholar 

  18. Ibid., p. 26.

    Google Scholar 

  19. Ibid., p. 48.

    Google Scholar 

  20. Ibid., p. 49.

    Google Scholar 

  21. Ibid., p. 63.

    Google Scholar 

  22. Ibid.

    Google Scholar 

  23. Weismann,A.,1885,Continuity of the germ-plasm as the foundation of a theory of heredity. Republished in Essays upon Heredity and Kindred Biological Problems, 1891–1892 (trans. by E. B. Poulton et al.), 2 Vols., 2nd ed., Clarendon Press, Oxford,Vol. 1, pp.163–255.

    Google Scholar 

  24. Child, C. M., 1915, Senesence and Rejuvenescence, University of Chicago Press, Chicago, pp. 11–12.

    Google Scholar 

  25. Driesch, H., 1891, Entwicklungsmechanische Studien. I. Der Werth der beiden ersten Furchungszelllen in der Echinodermentwicklung. Experimentelle Erzeugung von Theil-und Doppelbildungen. Zschr. Wissenschaft. Zool. 53: 160–178.

    Google Scholar 

  26. Weismann, 1983, pp. 137–138.

    Google Scholar 

  27. Quoted in Wilson, E. B., 1925, The Cell in Development and Heredity, 3rd ed., Macmillan, New York, p. 1056.

    Google Scholar 

  28. See Sapp, J., 1983, The struggle for authority in the field of heredity, 1900–1932: New perspectives on the rise of genetics, J. Hist. Biol. 16: 311–342.

    Google Scholar 

  29. Morgan, T. H., 1919, The Physical Basis of Heredity, Lippincott, Philadelphia, p. 241.

    Chapter  Google Scholar 

  30. Sapp, 1983.

    Google Scholar 

  31. See Churchill, E, 1969, From machine-theory to entelechy: Two studies in developmental teleology, J. Hist. Biol. 2: 165–185.

    Google Scholar 

  32. Loeb, J., 1916, The Organism as a Whole, Putnam’s Sons, New York, p. vi.

    Book  Google Scholar 

  33. Conklin, E. G., 1915, Heredity and Environment in the Development of Men, Princeton University Press, Princeton, NJ, p. 176.

    Google Scholar 

  34. Ibid., p. 241.

    Google Scholar 

  35. Harrison, R., 1937, Embryology and its relations, Science 85: 369–374.

    Article  PubMed  CAS  Google Scholar 

  36. See Sapp (1986, 1987).

    Google Scholar 

  37. Ephrussi, B., 1953, Nucleo-cytoplasmic Relations in Microorganisms, Clarendon Press, Oxford, U.K., p. 100.

    Google Scholar 

  38. Sonneborn, T. M., 1951, The role of genes in cytoplasmic inheritance, in: Genetics in the Twentieth Century ( L. C. Dunn, ed.), Macmillan, New York, pp. 291–314.

    Google Scholar 

  39. Ephrussi, 1953, p. 104.

    Google Scholar 

  40. Lwoff, A., 1950, Problems of Morphogenesis in Ciliates: The Kinetosomes in Development, Reproduction and Evolution, Wiley, New York, p. 15.

    Google Scholar 

  41. Ibid., p. 2.

    Google Scholar 

  42. Chatton, E., Lwoff, A., and Lwoff, M., 1929, Les infraciliatures et la continuité génétiques des systèmes ciliaires récessifs, C. R. Acad. Sci. 188: 1190–1192.

    Google Scholar 

  43. Lwoff, 1950, pp. 7, 29.

    Google Scholar 

  44. Ibid., p. 32.

    Google Scholar 

  45. Tartar, V., 1941, Intracellular patterns: Facts and principles concerning patterns exhibited in the morphogenesis and regeneration of ciliate protozoa, Growth 3: 23–48.

    Google Scholar 

  46. Fauré-Frémiet, E., 1948, Les mécanismes de la morphogenèse chez les ciliés, Fol. Biotheor. 111: 25–58.

    Google Scholar 

  47. Lwoff, 1950, pp. 28, 62, 78.

    Google Scholar 

  48. Quoted in Lwoff, 1950, p. 29.

    Google Scholar 

  49. Weiss, P., 1947, The problem of specificity in growth and development, Yale J. Biol. Med. 19: 235–278.

    CAS  Google Scholar 

  50. Lwoff, 1950, p. 28.

    Google Scholar 

  51. Ibid.

    Google Scholar 

  52. Ibid.

    Google Scholar 

  53. Ibid., p. 84.

    Google Scholar 

  54. Ibid., p. 33.

    Google Scholar 

  55. Ibid., p. 84.

    Google Scholar 

  56. Ibid., p. 86.

    Google Scholar 

  57. Ephrussi, 1953, p. 4.

    Google Scholar 

  58. See Nanney, D. L., 1958, Epigenetic control systems, Proc. Natl. Acad. Sci. USA 44:327–335; Ephrussi, B., 1958, The cytoplasm and somatic cell variation, J. Cell. Comp. Physiol. 52: 35–53.

    Google Scholar 

  59. Nanney, D. L., 1957, The role of the cytoplasm in heredity, in: The Chemical Basis of Heredity ( W. D. McElroy and H. B. Glass, eds.), Johns Hopkins Press, Baltimore, pp. 134–164.

    Google Scholar 

  60. Ephrussi, 1953, p. 49.

    Google Scholar 

  61. Sonneborn, T. M., 1964, The differentiation of cells, Proc. Natl. Acad. Sci. USA 51: 915–929.

    Google Scholar 

  62. Jacob, E, and Monod, J., 1963, Elements of regulatory circuits in bacteria, in: Biological Organization at the Cellular and Subcellular Level ( R. J. C. Harris, ed.), Academic Press, London, pp. 1–24.

    Google Scholar 

  63. Buttin, G., Jacob, F., and Monod, J., 1967, The operon: A unit of coordinated gene action, in: Heritage from Mendel ( R. A. Brink, ed.), University of Wisconsin Press, Madison, pp. 155–178.

    Google Scholar 

  64. Sonneborn, 1964, p. 918.

    Google Scholar 

  65. Jacob and Monod, 1963, p. 1.

    Google Scholar 

  66. Jacob, F., 1976, The Logic of Life. A History of Heredity, translated by B. E. Spillman, Vintage Books, New York, p. 247.

    Google Scholar 

  67. Jacob, E, and Monod, J., 1961, Telenomic mechanisms in cellular metabolism, growth and differentiation, Cold Spring Harbor Symp. Quant. Biol. 21: 389–401.

    Google Scholar 

  68. The history of the research and theories pertaining to symbiosis and evolutionary theory is being investigated by the author. See Sapp, J., 1990, Symbiosis in evolution: an origin story, EndocytobiosisCellRes.7:5–36; Sapp, J., 1991, Living Together: Symbiosis and cytoplasmic inheritance, in: Symbiosis as a Source of Evolutionary Innovation: Speciation and Morphogenesis ( Margulis and Fester, eds.), MIT Press,Boston.

    Google Scholar 

  69. Ephrussi, B., 1972, Hybridization of Somatic Cells, Princeton University Press, Princeton, NJ, p. 113.

    Google Scholar 

  70. Sonneborn, T. M., 1960, The gene and cell differentiation, Proc. Natl. Acad. Sci. USA 46: 149–165.

    Google Scholar 

  71. See, for example, Sonneborn, T. M., 1963, Does preformed cell structure play an essential role in cell heredity? in: The Nature of Biological Diversity U. M. Allen, ed.), McGraw—Hill, New York, pp. 165–221; Monod, J., 1972, Chance and Necessity, translated by A. Wainhouse, Vintage Books, New York; Jacob, 1976.

    Google Scholar 

  72. See Sonneborn, T. M., 1964, The differentiation of cells, Proc. Natl. Acad. Sci. USA 51: 915–929.

    CAS  Google Scholar 

  73. Luria, S., 1966, Discussion following Lengyel, P., Problems in protein biosynthesis, J. Gen. Physiol. 49: 305–330.

    Google Scholar 

  74. Tartar, V., 1961, The Biology of Stentor, Paramon Press, Oxford, pp. 1–2.

    Google Scholar 

  75. See Sonneborn, 1963, p. 213.

    Google Scholar 

  76. Ibid.

    Google Scholar 

  77. Beisson, J., and Sonneborn, T. M., 1965, Cytoplasmic inheritance of the organization of the cell cortex in Paramecium aurelia, Proc. Nat. Acad. Sci. 53: 275–282.

    Google Scholar 

  78. See Nanney, D. L., 1980, Experimental Ciliatology, Wiley, New York.

    Google Scholar 

  79. Sonneborn, T. M., 1963, Bearing of protozoan studies on current theory of genic and cytoplasmic actions, in: The Nature of Biological Diversity ( J. M. Allen ed.), McGraw-Hill, New York, pp. 165–221.

    Google Scholar 

  80. Nanney, D. L., 1968, Cortical patterns in cellular morphogenesis, Science 160: 496–502.

    Article  PubMed  CAS  Google Scholar 

  81. See Nanney, 1980, p. 162; Frankel, J., 1984, Pattern formation in ciliated protozoa, in: Pattern Formation: A Primer in Developmental Biology ( G. M. Malacinski and S. V. Bryant, eds.), Macmillan, New York, pp. 163–196.

    Google Scholar 

  82. Hershey, A. D., 1970, Genes and hereditary characteristics, Nature 226: 697–700.

    Article  PubMed  CAS  Google Scholar 

  83. Ephrussi, 1972, p. 112.

    Google Scholar 

  84. Sonneborn, T. M., 1974, Ciliate morphogenesis and its bearing on general cellular morpho-genesis, Actual. Protozool. 1: 327–355.

    Google Scholar 

  85. Hershey, 1970, p. 700.

    Google Scholar 

  86. See Sonneborn, 1963, p. 217.

    Google Scholar 

  87. Nanney, 1980, p. 173.

    Google Scholar 

  88. Frankel, J., 1974, Positional information in unicellular organisms, J. Theoret. Biol. 47: 439–481.

    Google Scholar 

  89. Ibid.

    Google Scholar 

  90. See Nanney, 1980, p. 167.

    Google Scholar 

  91. Nanney, 1983; Sapp, 1987.

    Google Scholar 

  92. See, for example, Wolpert, L., 1982, Pattern formation and change, in: Evolution and Development U. T. Bonner, ed.), Springer-Verlag, Berlin, pp. 43–55.

    Google Scholar 

  93. Goodwin, B. C., 1983, Pattern formation and change, in: Evolution and Change ( J. T. Bonner, ed.), Springer-Verlag, Berlin, pp. 169–188.

    Google Scholar 

  94. Frankel, J., letter to the author, June 5–9, 1985, p. 8.

    Google Scholar 

  95. Goodwin, B., 1984, A relational or field theory of reproduction and its evolutionary implications, in: Beyond Neo-Darwinism. An Introduction to the New Evolutionary Paradigm ( M.-W. Ho and P. Saunders, eds.), Academic Press, London, pp. 219–241.

    Google Scholar 

  96. Ibid., p. 226.

    Google Scholar 

  97. Ibid., p. 226.

    Google Scholar 

  98. For a more detailed discussion of these issues, see Sapp, 1986, 1987.

    Google Scholar 

  99. Lwoff, A., 1990, L’organisation du cortex chez les ciliés: un exemple d’hérédité de caratère acquis, C. R. Acad. Sci. Paris 310: 109–111.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Sapp, J. (1991). Concepts of Organization the Leverage of Ciliate Protozoa. In: Gilbert, S.F. (eds) A Conceptual History of Modern Embryology. Developmental Biology, vol 7. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6823-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6823-0_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-6825-4

  • Online ISBN: 978-1-4615-6823-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics