Skip to main content

Developmental Regulation of the Heat-Shock Response

  • Chapter
Genomic Adaptability in Somatic Cell Specialization

Part of the book series: Developmental Biology ((DEBO,volume 6))

Abstract

Cell differentiation in the development of multicellular organisms occurs as a consequence of the generation of chronologically and spatially distinct patterns of protein synthesis. These unique constellations of proteins confer on cells the functional and structural characteristics that enable them to perform their specialized roles in the organism. However, in addition to the overt protein synthetic profile, cells may retain the potential to produce proteins that they would not normally produce in significant amounts. During periods of stress, this potential is realized and is evidenced by the synthesis of a set of stress proteins. As discussed in this chapter, the pattern of stress protein synthesis is also subject to developmental regulation. Thus, cells are simultaneously engaged in two parallel developmental processes: regulation of the patterns of overt and stress-inducible protein synthesis. Stress-inducible protein synthesis can be evoked by regulation at either the transcriptional or translational levels, or both. Thus, regulation at both levels must be subject to developmental modulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ashburner, M., 1970, Patterns of puffing activity in the salivary gland chromosomes of Drosophila. V. Responses to environmental treatments, Chromosoma 31:356–376.

    PubMed  CAS  Google Scholar 

  • Ashburner, M., and Bonner, J. J., 1979, The induction of gene activity in Drosophila by heat shock, Cell 17:241–254.

    PubMed  CAS  Google Scholar 

  • Atkinson, B. G., and Waiden, D. B. (eds.), 1985, Changes in Eukaryotic Gene Expression in Response to Environmental Stress, Academic, Orlando, Florida.

    Google Scholar 

  • Banerji, S. S., Theodorakis, N. G., and Morimoto, R. I., 1984, Heat shock-induced translational control of hsp70 and globin synthesis in chicken reticulocytes, Mol. Cell. Biol. 4:2437–2438.

    PubMed  CAS  Google Scholar 

  • Banerji, S. S., Laing, K., and Morimoto, R. I., 1987, Erythroid lineage-specific expression and inducibility of the major heat shock protein HSP70 during avian embryogenesis, Genes Dev. 1: 946–953.

    PubMed  CAS  Google Scholar 

  • Belanger, F. C., Brodl, M. R., and Ho, T.-H., 1986, Heat shock causes destabilization of specific mRNAs and destruction of endoplasmic reticulum in barley aleurone cells, Proc. Natl. Acad. Sci. USA 83:1354–1358.

    PubMed  CAS  Google Scholar 

  • Berger, E. M., and Woodward, M. P., 1983, Small heat shock proteins in Drosophila may confer thermal tolerance, Exp. Cell Res. 147:437–442.

    PubMed  CAS  Google Scholar 

  • Bergh, S., and Arking, R., 1984, Developmental profile of the heat shock response in early embryos of Drosophila, J. Exp. Zool. 231:379–391.

    PubMed  CAS  Google Scholar 

  • Bienz, M., 1984, Developmental control of the heat shock response in Xenopus, Proc. Natl. Acad. Sci. USA 81:3138–3142.

    PubMed  CAS  Google Scholar 

  • Bienz, M., and Gurdon, J. B., 1982, The heat shock response in Xenopus oocytes is controlled at the translational level, Cell 29:811–819.

    PubMed  CAS  Google Scholar 

  • Bienz, M., and Pelham, H. R. B., 1982, Expression of a Drosophila heat shock protein in Xenopus oocytes: Conserved and divergent regulatory signals, EMBO J. 1:1583–1588.

    PubMed  CAS  Google Scholar 

  • Bienz, M., and Pelham, H. R. B., 1986, Heat shock regulatory elements function as an inducible enhancer in the Xenopus hsp70 gene and when linked to a heterologous promoter, Cell 45: 753–760.

    PubMed  CAS  Google Scholar 

  • Biessmann, H., Falkner, F. G., Saumweber, H., and Walter, M. F., 1982, Disruption of the vimentin cytoskeleton may play a role in heat-shock response, in: Heat Shock from Bacteria to Man (M. J. Schlesinger, M. Ashburner, and A. Tissières, eds.), pp. 227–234, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.

    Google Scholar 

  • Bond, U., and Schlesinger, M. J., 1985, Ubiquitin is a heat shock protein in chick embryo fibroblasts, Mol. Cell Biol. 5:949–956.

    PubMed  CAS  Google Scholar 

  • Bond, U., and Schlesinger, M. J., 1987, Heat-shock proteins and development, Adv. Genet. 24:1–29.

    PubMed  CAS  Google Scholar 

  • Bonner, J. J., and Kerby, R. L., 1982, RNA polymerase II transcribes all of the heat shock induced genes of Drosophila melanogaster, Chromosoma 85:93–108.

    PubMed  CAS  Google Scholar 

  • Browder, L. W., Pollock, M., Heikkila, J. J., Wilkes, J., Wang, T., Krone, P., Ovsenek, N., and Kloc, M., 1987, Decay of the oocyte-type heat shock response of Xenopus laevis, Dev. Biol. 124:191–199.

    PubMed  CAS  Google Scholar 

  • Burdon, R. H., and Cutmore, C. M. M., 1982, Human heat shock gene expression and the modulation of plasma membrane sodium-potassium ATPase activity, FEBS Lett. 140:45–48.

    PubMed  CAS  Google Scholar 

  • Busa, W. B., and Nuccitelli, R., 1984, Metabolic regulation via intracellular pH, Am. J. Physiol. 246: R409–R438.

    PubMed  CAS  Google Scholar 

  • Busa, W. B., and Nuccitelli, R., 1985, An elevated free cytosolic Ca2 + wave follows fertilization in the eggs of the frog Xenopus laevis, J. Cell. Biol. 100:1325–1329.

    PubMed  CAS  Google Scholar 

  • Chappell, T. G., Welch, W. J., Schlossman, D. M., Palter, K. B., Schlesinger, M. J., and Rothman, J. E., 1986, Uncoating ATPase is a member of the 70 kilodalton family of stress proteins, Cell 45: 3–13.

    PubMed  CAS  Google Scholar 

  • Christiansen, E. N., and Kvamme, E., 1969, Effects of thermal treatment on mitochondria of brain, liver, and ascites cells, Acta Physiol. Scand. 76:472–484.

    PubMed  CAS  Google Scholar 

  • Cross, N. L., and Elinson, R. P., 1980, A fast block to polyspermy in frogs mediated by changes in the membrane potential, Dev. Biol. 75:187–198.

    PubMed  CAS  Google Scholar 

  • Darasch, S., Mosser, D. D., Bols, N. C., and Heikkila, J. J., 1988, Heat shock gene expression in Xenopus laevis A6 cells in response to heat shock and sodium arsenite treatments, Biochem. Cell Biol. 66:862–870.

    PubMed  CAS  Google Scholar 

  • Davidson, E. H., 1986, Gene Activity in Early Development, 3rd ed., Academic, Orlando, Florida.

    Google Scholar 

  • Dickson, J. A., and Oswald, B. E., 1976, The sensitivity of a malignant cell line to hyperthermia (42°C) at low intracellular pH, Br. J. Cancer 34:262–271.

    PubMed  CAS  Google Scholar 

  • DiDomenico, B. J., Bugaisky, G. E., and Lindquist, S., 1982, The heat shock response is self-regulated at both the transcriptional and posttranscriptional levels, Cell 31:593–603.

    PubMed  CAS  Google Scholar 

  • Drummond, I. A. S., McClure, S. A., Poenie, M., Tsien, R. Y., and Steinhardt, R. A., 1986, Large changes in intracellular pH and calcium observed during heat shock are not responsible for the induction of heat shock proteins in Drosophila melanogaster, Mol. Cell. Biol. 6:1767–1775.

    PubMed  CAS  Google Scholar 

  • Duncan, R., and Hershey, J. W. B., 1984, Heat shock-induced translational alterations in HeLa cells, Initiation factor modifications and the inhibition of translation, J. Biol. Chem. 259:11882–11889.

    PubMed  CAS  Google Scholar 

  • Dura, J.-M., 1981, Stage dependent synthesis of heat shock induced proteins in early embryos of Drosophila melanogaster, Mol. Gen. Genet. 184:381–385.

    PubMed  CAS  Google Scholar 

  • Edwards, M. J., 1981, Clinical disorders of fetal brain development: Defects due to hyperthermia, in: Fetal Brain Disorders—Recent Approaches to the Problem of Mental Deficiency (B. S. Hetzl and R. M. Smith, eds.), pp. 335–364, Elsevier, Amsterdam.

    Google Scholar 

  • Elsdale, T., Pearson, M., and Whitehead, M., 1976, Abnormalities in somite segmentation following heat shock to Xenopus embryos, J. Embryol. Exp. Morphol. 35:625–635.

    PubMed  CAS  Google Scholar 

  • Eppig, J. J., and Steckman, M. L., 1976, Comparison of exogenous energy sources for in vitro maintenance of follicle cell-free Xenopus laevis oocytes, In Vitro 12:173–179.

    PubMed  CAS  Google Scholar 

  • Etkin, L. D., 1988, Regulation of the mid-blastula transition in amphibians, in: Developmental Biology: A Comprehensive Synthesis, Vol. 5: The Molecular Biology of Cell Determination and Cell Differentiation (L. W. Browder, ed.), pp. 209–225, Plenum, New York.

    Google Scholar 

  • Falkner, F. G., Saumweber, H., and Biessmann, H., 1981, Two Drosophila melanogaster proteins related to intermediate filament proteins of vertebrate cells, J. Cell Biol. 91:175–183.

    PubMed  CAS  Google Scholar 

  • Ferl, R. J., Dlouhy, S. R., and Schwartz, D., 1979, Analysis of maize alcohol dehydrogenase by native-SDS two dimensional electrophoresis and autoradiography, Mol. Gen. Genet. 169:7–12.

    CAS  Google Scholar 

  • Findly, R. C., Gillies, R. J., and Shulman, R. G., 1983, In vivo phosphorus-31 nuclear magnetic resonance reveals lowered ATP during heat shock of Tetrahymena, Science 219:1223–1225.

    PubMed  CAS  Google Scholar 

  • Finnell, R. H., Moon, S. P., Abbott, L. C., Golden, J. A., and Chernoff, G. F., 1986, Strain differences in heat-induced neural tube defects in mice, Teratology 33:247–252.

    PubMed  CAS  Google Scholar 

  • Gerhart, J. G., 1980, Mechanisms regulating pattern formation in the amphibian egg and early embryo, in: Biological Regulation and Development (R. F. Goldberger, ed.), pp. 133–315, Plenum, New York.

    Google Scholar 

  • German, J., 1984, Embryonic stress hypothesis of teratogenesis, Am. J. Med. 76:293–301.

    PubMed  CAS  Google Scholar 

  • Gerner, E. W., and Schneider, M. J., 1975, Induced thermal resistance in HeLa cells, Nature (Lond.) 256:500–502.

    PubMed  CAS  Google Scholar 

  • Giudice, G., 1985, Heat shock proteins in sea urchin development, in: Changes in Eukaryotic Gene Expression in Response to Environmental Stress (B. G. Atkinson and D. B. Waiden, eds.), pp. 115–133, Academic, Orlando, Florida.

    Google Scholar 

  • Goldstein, E. S., and Penman, S., 1973, Regulation of protein synthesis in mammalian cells. V. Further studies on the effect on actinomycin D on translation control in HeLa cells, J. Mol. Biol. 80:243–254.

    PubMed  CAS  Google Scholar 

  • Graziosi, G., Micali, F., Marzari, R., DeCristini, F., and Savioni, A., 1980, Variability of response of early Drosophila embryos to heat shock, J. Exp. Zool. 214:141–145.

    CAS  Google Scholar 

  • Gurdon, J. B., 1976, Injected nuclei in frog oocytes: Fate, enlargement, and chromatin dispersal, J. Embryol. Exp. Morphol. 36:523–540.

    PubMed  CAS  Google Scholar 

  • Hadjiolov, A. A., and Milchev, G. I., 1974, Synthesis and maturation of ribosomal ribonucleic acids in isolated HeLa cell nuclei, Biochem. J. 142:263–272.

    PubMed  CAS  Google Scholar 

  • Hahnel, A. C., Gifford, D. J., Heikkila, J. J., and Schultz, G. A., 1986, Expression of the major heat shock protein (hsp 70) family during early mouse embryo development, Teratogenesis, Car-cinog. Mutagen. 6:493–510.

    CAS  Google Scholar 

  • Hammond, G. L., Lai, Y.-K., and Markert, C. L., 1982, Diverse forms of stress lead to new patterns of gene expression through a common and essential pathway, Proc. Natl. Acad. Sci. USA 79: 3485–3488.

    PubMed  CAS  Google Scholar 

  • Heikkila, J. J., Kloc, M., Bury, J., Schultz, G. A., and Browder, L. W., 1985a, Acquisition of the heat shock response and thermotolerance during early development of Xenopus laevis, Dev. Biol. 107:483–489.

    PubMed  CAS  Google Scholar 

  • Heikkila, J. J., Miller, J. G. O., Schultz, G. A., Kloc, M., and Browder, L. W., 1985b, Heat shock gene expression during early animal development, in: Changes in Eukaryotic Gene Expression in Response to Environmental Stress (B. G. Atkinson and D. B. Waiden, eds.), pp. 135–158, Academic, Orlando, Florida.

    Google Scholar 

  • Heikkila, J. J., Ovsenek, N., and Krone, P., 1987a, Examination of heat shock protein mRNA accumulation in early Xenopus laevis embryos, Biochem. Cell Biol. 65:87–94.

    PubMed  CAS  Google Scholar 

  • Heikkila, J. J., Darasch, S. P., Mosser, D. D., and Bols, N. C., 1987b, Heat and sodium arsenite act synergistically on the induction of heat shock gene expression in Xenopus laevis A6 cells, Biochem. Cell Biol. 65:310–316.

    PubMed  CAS  Google Scholar 

  • Heikkila, J. J., and Schultz, G. A., 1984, Different environmental stresses can activate the expression of a heat shock gene in rabbit blastocysts, Gamete Res. 10:45–56.

    CAS  Google Scholar 

  • Henle, K. J., and Leeper, D. B., 1976, Interaction of hyperthermia and radiation in CHO cells: Recovery kinetics, Radiat. Res. 66:505–518.

    PubMed  CAS  Google Scholar 

  • Hershko, A., 1983, Ubiquitin: Roles in protein modification and breakdown, Cell 34:11–12.

    PubMed  CAS  Google Scholar 

  • Hollinger, T. G., and Corton, G. L., 1980, Artificial fertilization of gametes from the South African Clawed Frog, Xenopus laevis, Gamete Res. 3:45–57.

    CAS  Google Scholar 

  • Howlett, S., Miller, J., and Schultz, G. A., 1983, Induction of heat shock proteins in early embryos of Arbacia punctulata, Biol. Bull. 165:500.

    Google Scholar 

  • Iida, H., and Yahara, I., 1985, Yeast heat-shock protein of Mr 48,000 is an isoprotein of enolase, Nature (Lond.) 315:688–690.

    CAS  Google Scholar 

  • Ingolia, T. D., and Craig, E. A., 1982, Four small Drosophila heat shock proteins are related to each other and mammalian α-crystallin, Proc. Natl. Acad. Sci. USA 79:2360–2364.

    PubMed  CAS  Google Scholar 

  • Ito, S., 1972, Effects of media of different ionic composition on the activation potential of anuran egg cells, Dev. Growth Diff. 14:217–220.

    Google Scholar 

  • Johnston, R. N., and Kucey, B. L., 1988, Competitive inhibition of hsp70 gene expression causes thermosensitivity, Science 242:1551–1554.

    PubMed  CAS  Google Scholar 

  • Katagiri, C., 1961, On the fertilizability of the frog egg. I, J. Fac. Sci. Hokkaido Univ. Ser. VI, Zool. 14:607–613.

    Google Scholar 

  • Kelley, P. M., and Freeling, M., 1982, A preliminary comparison of maize anaerobic and heat-shock proteins, in: Heat Shock. From Bacteria to Man (M. J. Schlesinger, M. Ashburner, and A. Tissières, eds.), pp. 315–319, old Spring Harbor Laboratory, Cold Spring Harbor, New York.

    Google Scholar 

  • Kelley, P. M., and Freeling, M., 1984a, Anaerobic expression of maize fructose-l,6-diphosphate aldolase, J. Biol Chem. 259:14180–14183.

    PubMed  CAS  Google Scholar 

  • Kelley, P. M., and Freeling, M., 1984b, Anaerobic expression of maize glucose phosphate isomerase I, J. Biol. Chem. 259:673–677.

    PubMed  CAS  Google Scholar 

  • Kelley, P. M., and Schlesinger, M. J., 1982, Antibodies to two major chicken heat shock proteins cross-react with similar proteins in widely divergent species, Mol. Cell. Biol. 2:267–274.

    PubMed  CAS  Google Scholar 

  • Kimelman, D., Kirschner, M., and Scherson, T., 1987, The events of the midblastula transition in Xenopus are regulated by changes in the cell cycle, Cell 48:399–407.

    PubMed  CAS  Google Scholar 

  • King, M.-L., and Davis, R., 1987, Do Xenopus oocytes have a heat shock response?, Dev. Biol. 119: 532–539.

    PubMed  CAS  Google Scholar 

  • Klemenz, R., Hultmark, D., and Gehring, W. J., 1985, Selective translation of heat shock mRNA in Drosophila melanogaster depends on sequence information in the leader, EMBO J. 4:2053–2060.

    PubMed  CAS  Google Scholar 

  • Kline, D., and Nuccitelli, R., 1985, The wave of activation current in the Xenopus egg, Dev. Biol. 111:471–487.

    PubMed  CAS  Google Scholar 

  • Krone, P. H., and Heikkila, J. J., 1988, Analysis of hsp 30, hsp 70 and ubiquitin gene expression in Xenopus laevis tadpoles, Development 103:59–67.

    PubMed  CAS  Google Scholar 

  • Krone, P. H., and Heikkila, J. J., 1989, Expression of microinjected HSP30-CAT and HSP70-CAT chimeric genes in development of Xenopus laevis embryos, Development (in press.)

    Google Scholar 

  • Krüger, C., and Benecke, B. J., 1981, In vitro translation of Drosophila heat-shock and non-heat-shock mRNAs in heterologous and homologous cell-free systems, Cell 23:595–603.

    Google Scholar 

  • Landry, J., 1986, Heat shock proteins and cell thermotolerance, in: Hyperthermia in Cancer Treatment, Vol. I (L. J. Anghileri and J. Robert, eds.), pp. 37–58, CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Landry, J., Bernier, D., Chretién, P., Nicole, L. M., Tanguay, R. M., and Marceau, N., 1982, Synthesis and degradation of heat shock proteins during development and decay of thermotolerance, Cancer Res. 42:2457–2461.

    PubMed  CAS  Google Scholar 

  • Landry, J., Samson, S., and Chretién, P., 1986, Hyperthermia-induced cell death, thermotolerance and heat shock proteins in normal, respiration-deficient and glycolysis-deficient Chinese hamster cells, Cancer Res. 46:324–327.

    PubMed  CAS  Google Scholar 

  • Lee, H. C., and Steinhardt, R. A., 1981, Observations on intracellular pH during cleavage of eggs of Xenopus laevis, J. Cell. Biol. 91:414–419.

    PubMed  CAS  Google Scholar 

  • Leenders, H. J., Kemp, A., Koninkx, J. F. J. C., and Rosing, J., 1974, Changes in cellular ATP, ADP and AMP levels following treatments affecting cellular respiration and the activity of certain nuclear genes in Drosophila salivary glands, Exp. Cell Res. 86:25–30.

    PubMed  CAS  Google Scholar 

  • Lepock, J. R., Cheng, K.-H., Al-Qysi, H., and Kruuv, J., 1983, Thermotropic lipid and protein transitions in Chinese hamster lung cell membranes: Relationship to hyperthermic cell killing, Can. J. Biochem. Cell Biol. 61:428–437.

    Google Scholar 

  • Lewis, M. J., and Pelham, H. R. B., 1985, Involvement of ATP in the nuclear and nucleolar functions of the 70 kd heat shock protein, EMBO J. 4:3137–3143.

    PubMed  CAS  Google Scholar 

  • Li, G. C., and Hahn, G. M., 1980, A proposed operational model of thermotolerance based on effects of nutrients and initial temperature, Cancer Res. 40:4501–4508.

    PubMed  CAS  Google Scholar 

  • Li, G. C., and Laszlo, A., 1985, Thermotolerance in mammalian cells: A possible role for heat shock proteins, in: Changes in Eukaryotic Gene Expression in Response to Environmental Stress (B. G. Atkinson, and D. B. Waiden, eds.), pp. 227–256, Academic, Orlando, Florida.

    Google Scholar 

  • Li, G. C., and Mivechi, N. F., 1986, Thermotolerance in mammalian systems: A review, in: Hyperthermia in Cancer Treatment, Vol. I. (L. J. Anghileri and J. Robert, eds.), pp. 59–77, CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Li, G. C., and Werb, Z., 1982, Correlation between synthesis of heat shock proteins and development of thermotolerance in Chinese hamster fibroblasts, Proc. Natl. Acad. Sci. USA 79:3268–3272.

    Google Scholar 

  • Lindquist, S., 1980, Varying patterns of protein synthesis in Drosophila during heat shock: Implications for regulation, Dev. Biol. 77:463–479.

    PubMed  CAS  Google Scholar 

  • Lindquist, S., 1986, The heat-shock response, Annu. Rev. Biochem. 55:1151–1191.

    PubMed  CAS  Google Scholar 

  • Lindquist, S., and DiDomenico, B., 1985, Coordinate and noncoordinate gene expression during heat shock: A model for regulation, in: Changes in Eukaryotic Gene Expression in Response to Environmental Stress (B. G. Atkinson, and D. B. Waiden, eds.), pp. 71–90, Academic, Orlando, Florida.

    Google Scholar 

  • Lindquist McKenzie, S., Henikoff, S., and Meselson, M., 1975, Localization of RNA from heat-induced polysomes at puff sites in Drosophila melanogaster, Proc. Natl. Acad. Sci. USA 72: 1117–1121.

    Google Scholar 

  • Maclean, N., Hilder, V. A., and Baynes, Y. A., 1973, RNA synthesis in Xenopus erythrocytes, Cell Diff. 2:261–269.

    CAS  Google Scholar 

  • Maéno, T., 1959, Electrical characteristics and activation potential of Bufo eggs, J. Gen. Physiol. 43: 139–157.

    PubMed  Google Scholar 

  • Marsden, M., Nickells, R. W., Wang, T. L, Kapoor, M., and Browder, L. W., 1989, The induction of pyruvate kinase synthesis by heat shock in Xenopus laevis embryos. Manuscript submitted.

    Google Scholar 

  • McCormick, W., and Penman, S., 1969, Regulation of protein synthesis in HeLa cells: Translation at elevated temperatures, J. Mol. Biol. 39:315–333.

    PubMed  CAS  Google Scholar 

  • McGarry, T. J., and Lindquist, S., 1985, The preferential translation of Drosophila hsp70 mRNA requires sequences in the untranslated leader, Cell 42:903–911.

    PubMed  CAS  Google Scholar 

  • McGarry, T. J., and Lindquist, S., 1986, Inhibition of heat shock protein synthesis by heat-inducible antisense RNA, Proc. Natl. Acad. Sci. USA 83:399–403.

    PubMed  CAS  Google Scholar 

  • Mee, J. E., and French, V., 1986, Disruption of segmentation in a short germ insect embryo. I. The location of abnormalities induced by heat shock, J. Embryol. Exp. Morphol. 92:245–266.

    Google Scholar 

  • Mirault, M.-E., Goldschmidt-Clermont, M., Moran, L., Arrigo, A. P., and Tissières, A., 1978, The effect of heat shock on gene expression in Drosophila melanogaster, Cold Spring Harbor Symp. Quant. Biol. 42:819–827.

    PubMed  CAS  Google Scholar 

  • Mirkes, P. E., 1985, Effects of acute exposure to elevated temperatures on rat embryo growth and development in vitro, Teratology 32:259–266.

    PubMed  CAS  Google Scholar 

  • Mitchell, H. K., and Petersen, N. S., 1981, Rapid changes in gene expression in differentiating tissues of Drosophila, Dev. Biol. 85:233–242.

    PubMed  CAS  Google Scholar 

  • Mitchell, H. K., and Petersen, N. S., 1982a, Heat shock induction of abnormal morphogenesis in Drosophila, in: Heat Shock. From Bacteria to Man (M. J. Schlesinger, M. Ashburner, and A. Tissières, eds.), pp. 337–344, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.

    Google Scholar 

  • Mitchell, H. K., and Petersen, N. S., 1982b, Development abnormalities in Drosophila induced by heat shock, Dev. Genet. 3:91–102.

    CAS  Google Scholar 

  • Mondovi, B., Stron, R., Rotilio, G., Argo, A. F., Cavalière, R., and Rossi Fanelli, A., 1969, The biochemical mechanism of selective heat sensitivity of cancer cells. I. Studies on cellular respiration, Eur. J. Cancer 5:129–136.

    PubMed  CAS  Google Scholar 

  • Morange, M., Dui, A., Bensaude, O., and Babinet, C., 1984, Altered expression of heat shock proteins in embryonal carcinoma and mouse early embryonic cells, Mol. Cell. Biol. 4:730–735.

    PubMed  CAS  Google Scholar 

  • Muller, W. U., Li, G. C., and Goldstein, L. S., 1985, Heat does not induce synthesis of heat shock proteins or thermotolerance in the earliest stages of embryo development, Int. J. Hypertherm. 1: 97–102.

    CAS  Google Scholar 

  • Munro, S., and Pelham, H. R. B., 1985, What turns on heat shock genes?, Nature (Lond.) 317:477–478.

    PubMed  CAS  Google Scholar 

  • Munro, S., and Pelham, H. R. B., 1986, An hsp70-like protein in the ER: Identity with the 78 kd glucose-regulated protein and immunoglobulin heavy chain binding protein, Cell 46:291–300.

    PubMed  CAS  Google Scholar 

  • Newport, J., and Kirschner, M., 1982a, A major developmental transition in early Xenopus embryos. I. Characterization and timing of cellular changes at the midblastula stage, Cell 30: 675–686.

    PubMed  CAS  Google Scholar 

  • Newport, J., and Kirschner, M., 1982b, A major developmental transition in early Xenopus embryos. II. Control of the onset of transcription, Cell 30:687–696.

    PubMed  CAS  Google Scholar 

  • Nickells, R. W., 1987, The developmental acquisition and mechanism of thermotolerance in Xenopus laevis embryos, Ph.D. thesis, University of Calgary, Calgary, Alberta, Canada.

    Google Scholar 

  • Nickells, R. W., and Browder, L. W., 1985, Region-specific heat shock protein synthesis correlates with a biphasic acquisition of thermotolerance in Xenopus laevis embryos, Dev. Biol. 112:391–395.

    CAS  Google Scholar 

  • Nickells, R. W., and Browder, L. W., 1988, A role for glyceraldehyde-3-phosphate dehydrogenase in the development of thermotolerance in Xenopus laevis embryos, J. Cell Biol. 107:1901–1909.

    PubMed  CAS  Google Scholar 

  • Nover, L., Hellmund, D., Neumann, D., Scharf, K.-D., and Serfling, E., 1984, The heat shock response of eukaryotic cells, Biol. Zentralbl. 103:357–435.

    CAS  Google Scholar 

  • Nuccitelli, R., Webb, J. D., Lagier, S. T., and Matson, G. B., 1981, 31P NMR reveals an increase in intracellular pH after fertilization in Xenopus eggs, Proc. Natl. Acad. Sci. USA 78:4421–4425.

    PubMed  CAS  Google Scholar 

  • Ovsenek, N., and Heikkila, J. J., 1988, Heat shock-induced accumulation of ubiquitin mRNA in Xenopus laevis embryos is developmentally regulated, Dev. Biol. 129:582–585.

    PubMed  CAS  Google Scholar 

  • Parag, H. A., Raboy, B., and Kulka, R. G., 1987, Effect of heat shock on protein degradation in mammalian cell: Involvement in the ubiquitin system, EMBO J. 6:55–61.

    PubMed  CAS  Google Scholar 

  • Parker, C. S., and Topol, J., 1984, A Drosophila RNA polymerase II transcription factor binds to the regulatory site of an hsp70 gene, Cell 37:273–283.

    PubMed  CAS  Google Scholar 

  • Patzer, E. J., Schlossman, D. M., and Rothman, J. E., 1982, Release of clathrin from coated vesicles dependent upon a nucleoside triphosphate and cytosol fraction. J. Cell Biol. 93:230–236.

    PubMed  CAS  Google Scholar 

  • Pekkala, D., Heath, I. B., and Silver, J. C., 1984, Changes in chromatin and the phosphorylation of nuclear proteins during heat shock in Achlya amhisexualis, Mol. Cell. Biol. 4:1198–1205.

    PubMed  CAS  Google Scholar 

  • Pelham, H. R. B., 1982, A regulatory upstream promoter element in the Drosophila hsp70 heat-shock gene, Cell 30:517–528.

    PubMed  CAS  Google Scholar 

  • Pelham, H. R. B., 1984, hsp70 accelerates the recovery of nuclear morphology after heat shock, EMBO J. 3:3095–3100.

    PubMed  CAS  Google Scholar 

  • Pelham, H. R. B., 1986, Speculations on the functions of the major heat shock and glucose-regulated proteins, Cell 46:959–961.

    PubMed  CAS  Google Scholar 

  • Pelham, H. R. B., and Bienz, M., 1982, A synthetic heat-shock promoter element confers heat-inducibility on the herpes simplex virus thymidine kinase gene, EMBO J. 1:1473–1477.

    PubMed  CAS  Google Scholar 

  • Petersen, N. S., and Mitchell, H. K., 1981, Recovery of protein synthesis after heat shock: Prior heat treatment affects the ability of cells to translate mRNA, Proc. Natl. Acad. Sci. USA 78:1708–1711.

    PubMed  CAS  Google Scholar 

  • Petersen, N. S., and Mitchell, H. K., 1982, Effects of heat shock on gene expression during development: Induction and prevention of the multihair phenocopy in Drosophila, in: Heat Shock. From Bacteria to Man (M. J. Schlesinger, M. Ashburner, and A. Tissières, eds.), pp. 345–352, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.

    Google Scholar 

  • Piper, P. W., Curran, B., Davies, M. W., Lockheart, A., and Reid, G., 1986, Transcription of the phosphoglycerate kinase gene of Saccharomyces cerevisiae increases when fermentive cultures are stressed by heat shock, Eur. J. Biochem. 161:525–531.

    PubMed  CAS  Google Scholar 

  • Pleet, H., Graham, J. M., Jr., and Smith, D. W., 1981, Central nervous system and facial defects associated with maternal hyperthermia at four to 14 weeks’ gestation, Pediatrics 67:785–789.

    PubMed  CAS  Google Scholar 

  • Riabowol, K. T., Mizzen, L. A., and Welch, W. J., 1988, Heat shock is lethal to fibroblasts microin-jected with antibodies against hsp70, Science 242:433–436.

    PubMed  CAS  Google Scholar 

  • Ritossa, F. M., 1962, A new puffing pattern induced by heat shock and DNP in Drosophila, Experi-entia 18:571–573.

    CAS  Google Scholar 

  • Robbins, E., Pederson, T., and Klein, P., 1970, Comparison of mitotic phenomena and effects induced by hypertonic solutions in HeLa cells, J. Cell Biol. 44:400–416.

    PubMed  CAS  Google Scholar 

  • Roccheri, M. C., Di Bernardo, M. G., and Giudice, G., 1981, Synthesis of heat shock proteins in developing sea urchin, Dev. Biol. 83:173–177.

    PubMed  CAS  Google Scholar 

  • Rodenhiser, D. L., Jung, J. H., and Atkinson, B. G., 1986, The synergistic effect of hyperthermia and ethanol on changing gene expression of mouse lymphocytes, Can. J. Genet. Cytol. 28:1115–1124.

    PubMed  CAS  Google Scholar 

  • Roosenburg, W. H., Wright, D. A., and Castagna, M., 1984, Thermal tolerance by embryos and larvae of the surf clam Spisula solidissima, Environ. Res. 34:162–169.

    PubMed  CAS  Google Scholar 

  • Rothman, J. E., and Schmid, S. L., 1986, Enzymatic recycling of clathrin from coated vesicles, Cell 46:5–9.

    PubMed  CAS  Google Scholar 

  • Saborio, J. L., Pong, S.-S., and Koch, G., 1974, Selective and reversible inhibition of protein synthesis in mammalian cells, J. Mol. Biol. 85:195–211.

    PubMed  CAS  Google Scholar 

  • Sachs, M. M., and Freeling, M., 1978, Selective synthesis of alcohol dehydrogenase during anaerobic treatment of maize, Mol. Gen. Genet. 161:111–115.

    CAS  Google Scholar 

  • Sachs, M. M., Freeling, M., and Okimoto, R., 1980, The anaerobic proteins of maize, Cell 20:761–767.

    PubMed  CAS  Google Scholar 

  • Schlesinger, M. J., 1986, Heat shock proteins: The search for functions, J. Cell Biol. 103:321–325.

    PubMed  CAS  Google Scholar 

  • Schlesinger, M. J., Ashburner, M., and Tissières, A. (eds.), 1982, Heat Shock. From Bacteria to Man, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.

    Google Scholar 

  • Scott, M. P., and Pardue, M. L., 1981, Translational control in lysates of Drosophila melanogaster cells, Proc. Natl. Acad. Sci. USA 78:3353–3357.

    PubMed  CAS  Google Scholar 

  • Shiokawa, K., Misumi, Y., and Yamana, K., 1981a, Demonstration of rRNA synthesis in pre-gastrular embryos of Xenopus laevis, Dev. Growth Diff. 23:579–587.

    CAS  Google Scholar 

  • Shiokawa, K., Tashiro, K., Misumi, Y., and Yamana, K., 1981b, Non-coordinated synthesis of RNA’s in pre-gastrular embryos of Xenopus laevis, Dev. Growth Diff. 23:589–597.

    CAS  Google Scholar 

  • Shiu, R. P. C., Pouyssegur, J., and Paston, I., 1977, Glucose depletion accounts for the induction of two transformation-sensitive membrane proteins in Rous sarcoma virus-transformed chick embryo fibroblasts, Proc. Natl Acad. Sci. USA 74:3840–3844.

    PubMed  CAS  Google Scholar 

  • Shuey, D. J., and Parker, C. S., 1986, Binding of Drosophila heat-shock gene transcription factor to the hsp70 promoter. Evidence for symmetric and dynamic interactions, J. Biol. Chem. 261: 7934–7940.

    PubMed  CAS  Google Scholar 

  • Smith, D. W., Clarren, S. K., and Sedgwick, Harvey, M. A., 1978, Hyperthermia as a possible teratogenic agent, J. Pediatr. 92:878–883.

    PubMed  CAS  Google Scholar 

  • Spradling, A., Penman, S., and Pardue, M. L., 1975, Analysis of Drosophila mRNA by in situ hybridization: Sequences transcribed in normal and heat shocked cultured cells, Cell 4:395–404.

    PubMed  CAS  Google Scholar 

  • Storti, R. V., Scott, M. P., Rich, A., and Pardue, M.-L., 1980, Translational control of protein synthesis in response to heat shock in D. melanogaster cells, Cell 22:825–834.

    PubMed  CAS  Google Scholar 

  • Thomas, G. P., Welch, W. J., Mathews, M. B., and Feramisco, J. R., 1982, Molecular and cellular effects of heat shock and related treatments of mammalian tissue culture cells, Cold Spring Harbor Symp. Quant. Biol. 46:985–996.

    PubMed  Google Scholar 

  • Tissières, A., Mitchell, H. K., and Tracy, U. M., 1974, Protein synthesis in salivary glands of Drosophila melanogaster: Relation to chromosome puffs, J. Mol. Biol. 84:389–398.

    PubMed  Google Scholar 

  • Tomasovic, S. P., Rosenblatt, P. L., Johnston, D. A., Tang, K., and Lee, P. S. Y., 1984, Heterogeneity in induced heat resistance and its relation to synthesis of stress proteins in rat tumor cell clones, Can. Res. 44:5850–5856.

    CAS  Google Scholar 

  • Tomasovic, S. P., Steck, P. A., and Heitzman, D., 1983, Heat stress proteins and thermal resistance in rat mammary tumor cells, Radiat. Res. 95:399–413.

    PubMed  CAS  Google Scholar 

  • Ungewickell, E., 1985, the 70-kd mammalian heat shock proteins are structurally and functionally related to the uncoating protein that releases clathrin triskelia from coated vesicles, EMBO J. 4: 3385–3391.

    PubMed  CAS  Google Scholar 

  • Vincent, M., and Tanguay, R. M., 1979, Heat-shock induced protins present in the cell nucleus of Chironomus tentons salivary gland, Nature (Lond.) 281:501–503.

    PubMed  CAS  Google Scholar 

  • Watanabe, M., Nikaido, O., and Sugahara, T., 1984, Simultaneous hyperthermia at 43°C reduces radiation-induced malignant transformation frequencies in golden hamster embryo cells, Int. J. Cancer 33:483–489.

    PubMed  CAS  Google Scholar 

  • Webb, D. J., and Nuccitelli, R., 1981, Direct measurement of intracellular pH changes in Xenopus eggs at fertilization and cleavage, J. Cell Biol. 91:562–567.

    PubMed  CAS  Google Scholar 

  • Webb, D. J., and Nuccitelli, R., 1985, Fertilization potential and electrical properties of the Xenopus laevis egg, Dev. Biol. 107:395–406.

    PubMed  CAS  Google Scholar 

  • Webster, W. S., and Edwards, M. J., 1984, Hyperthermia and the induction of neural tube defects in mice, Teratology 29:417–425.

    PubMed  CAS  Google Scholar 

  • Webster, W. S., Germain, M. A., and Edwards, M. J., 1985, The induction of microphthalmia, encephalocele and other head defects following hyperthermia during gastrulation process in the rat, Teratology 31:73–82.

    PubMed  CAS  Google Scholar 

  • Welch, W. J., and Suhan, J. P., 1985, Morphological study of the mammalian stress response: Characterization of changes in cytoplasmic organelles, cytoskeleton, and nucleoli, and appearance of intranuclear actin filaments in rat fibroblasts after heat-shock treatment, J. Cell Biol. 101:1198–1211.

    PubMed  CAS  Google Scholar 

  • Welch, W. J., and Suhan, J. P., 1986, Cellular and biochemical events in mammalian cells during and recovery from physiological stress, J. Cell Biol. 103:2035–2052.

    PubMed  CAS  Google Scholar 

  • Wengler, G., and Wengler, G., 1972, Medium hypertonicity and polyribosome structure in HeLa cells. The influence of hypertonicity of the growth medium on polyribosomes in HeLa cells, Eur. J. Biochem. 27:162–173.

    PubMed  CAS  Google Scholar 

  • Wiederrecht, G., Shuey, D. J., Kibbe, W. A., and Parker, C. S., 1987, The Saccharomyces and Drosophila heat shock transcription factors are identical in size and DNA binding properties, Cell 48:507–515.

    PubMed  CAS  Google Scholar 

  • Wignarajah, K., and Greenway, H., 1976, Effect of anaerobiosis on activities of alcohol dehydrogenase and pyruvate decarboxylase in roots of Zea mays, New Phytol. 77:575–584.

    CAS  Google Scholar 

  • Wildt, D. E., Riegle, G. D., and Dukelow, W. R., 1975, Physiological temperature response and embryonic mortality in stressed swine, Am. J. Physiol. 229:1471–1475.

    PubMed  CAS  Google Scholar 

  • Winning, R. S., and Browder, L. W., 1988, Changes in heat shock protein synthesis and hsp70 gene transcription during erythropoiesis of Xenopus laevis, Dev. Biol. 128:111–120.

    PubMed  CAS  Google Scholar 

  • Wittig, S., Hensse, S., Keitel, C., Eisner, C., and Wittig, B., 1983, Heat shock gene expression is regulated during teratocarcinoma cell differentiation and early embryonic development, Dev. Biol 96:507–514.

    PubMed  CAS  Google Scholar 

  • Woodland, H. R., 1974, Changes in polysome content of developing Xenopus laevis embryos, Dev. Biol. 40:90–101.

    PubMed  CAS  Google Scholar 

  • Wu, C., 1985, An exonuclease protection assay reveals heat-shock element and TATA box DNA-binding proteins in crude nuclear extracts, Nature (Lond.) 317:84–87.

    PubMed  CAS  Google Scholar 

  • Wu, C., Wilson, S., Walker, B., Dawid, II, Paisley, T., Zimarino, V., and Ueda, H., 1987, Purification and properties of Drosophila heat shock activator protein. Science 238:1247–1253.

    PubMed  CAS  Google Scholar 

  • Zimarino, V., and Wu, C., 1987, Induction of sequence-specific binding of Drosophila heat shock activator protein without protein synthesis, Nature (Lond.) 327:727–730.

    PubMed  CAS  Google Scholar 

  • Zimmerman, J. L., Petri, W., and Meselson, M., 1983, Accumulation of a specific subset of Drosophila melanogaster heat shock messenger RNA in normal development without heat shock, Cell 32:1161–1170.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Browder, L.W., Pollock, M., Nickells, R.W., Heikkila, J.J., Winning, R.S. (1989). Developmental Regulation of the Heat-Shock Response. In: Genomic Adaptability in Somatic Cell Specialization. Developmental Biology, vol 6. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6820-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6820-9_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-6822-3

  • Online ISBN: 978-1-4615-6820-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics