Skip to main content

High-Speed Liquid Chromatography of Proteins

  • Chapter

Abstract

A discussion of protein separation should be prefaced with a review of our general knowledge of protein structure. Proteins are biopolymers composed of an ordered sequence of acidic, basic, neutral, and hydrophobic amino acids coupled via peptide bonds. The bending and folding of this primary chain results in a secondary structure that is maintained primarily by internal hydrogen bonding. Further stabilization of the protein occurs by hydrogen, ionic, hydrophobic, covalent, and van der Waals linkages between amino acid side chains. The net result of these secondary and tertiary modifications along the polypeptide chain is a three-dimensional matrix with some amino acids buried in the interior of the protein and others exposed at the surface. As a result, proteins have specific shapes and sizes; in addition, they have areas that may be anionic, cationic, and/or hydrophobic depending on the amino acid sequence. These differences in properties make possible the chromatographic resolution of proteins.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Fasold, G. Gundlach, and F. Turba, in: Chromatography (E. Heftmann, ed.), pp. 378–427, Reinhold, New York (1961).

    Google Scholar 

  2. W. Haller, Material and Method for Performing Steric Separations, U. S. Patent 3, 549, 524.

    Google Scholar 

  3. W. Haller, Chromatography on glass of controlled pore size, Nature, 206, 693–696 (1965).

    Article  CAS  Google Scholar 

  4. W. Haller, Virus isolation with glass of controlled pore size, MS-2 Bacteriophage and Kilham Virus, Virology, 33, 740–743 (1967).

    Article  CAS  Google Scholar 

  5. H. H. Gschwender, W. Haller, and P. H. Hofschneider, Large-scale preparation of viruses by steric chromatography on columns of controlled-pore glass: 0X174-, M13-, M12-, QB- and T4-bacteriophages, Biochim. Biophys. Acta, 190, 460–469 (1969).

    CAS  Google Scholar 

  6. W. Haller, K. D. Tympner, and K. Hannig, Preparation of immunoglobulin concentrates from human serum by chromatography on controlled pore glass, Anal. Biochem., 35, 23–31 (1970).

    Article  CAS  Google Scholar 

  7. C. W. Hiatt, A. Shelokov, E. J. Rosenthal and J. M. Galimore, Treatment of controlled pore glass with poly(ethylene-oxide) to prevent adsorption of rabies virus, J. Chromatogr., 56, 362–364 (1971).

    Article  Google Scholar 

  8. K. Marcinka, Application of permeation chromatography on controlled-pore glass in the purification of plant viruses, Acta Virol., 16, 52–62 (1972).

    Google Scholar 

  9. Y. A. Eltekov, A. V. Kiselev, T. D. Khokhlova, and Y. S. Nikitin, Adsorption and chromatography of proteins on chemically modified macroporous silica-aminosiloch-rom, Chromatographia, 6, 187–189 (1973).

    Article  CAS  Google Scholar 

  10. P. J. Kudirka, M. G. Busby, R. N. Carey, and E. C. Toren, Separation of creatine kinase isoenzymes by high-pressure liquid chromatography, Clin. Chem., 21, 450–452 (1975).

    CAS  Google Scholar 

  11. C.R. Lowe and P. D. G. Dean, Affinity Chromatography, John Wiley and Sons, Inc., New York (1974).

    Google Scholar 

  12. F. E. Regnier and R. Noel, Glycerolpropylsilane bonded phases in the steric exclusion chromatography of biological macromolecules, J. Chromatogr. Sci., 14, 316–32(1976).

    CAS  Google Scholar 

  13. D. C. Locke, Chemically bonded stationary phases for liquid chromatography, J. Chromatogr. Sci., 11, 120–128 (1973).

    CAS  Google Scholar 

  14. R. C. Collins and W. Haller, Protein-sodium dodecyl sulfate complexes: Determination of molecular weight, size and shape by controlled pore glass chromatography, Anal. Biochem., 54, 47–53 (1973).

    Article  CAS  Google Scholar 

  15. Corning Controlled Pore Glass CPG-10 Series Column Packing, Corning Chromatography Products Product Information. Data Sheet 104 (1969).

    Google Scholar 

  16. J. C. Giddings, Dynamics of Chromatography Part I, Marcel Dekker, Inc., New York (1965).

    Google Scholar 

  17. E. Grusha, L. R. Snyder, and J. H. Knox, Advances in band spreading theories, J. Chromatogr. Sci., 13, 25–37 (1975).

    Google Scholar 

  18. R. E. Majors, Effect of particle size on column efficiency in liquid-solid chromatography, J. Chromatogr. Sci., 11, 88–95 (1973).

    CAS  Google Scholar 

  19. J. Vermont, M. Deleuil, A. J. deVries, and C. L. Guillemin, Modern liquid chromatography on Spherosil, Anal. Chem., 47, 1329–1337 (1975).

    Article  CAS  Google Scholar 

  20. L. R. Snyder and J. J. Kirkland, Introduction to Modern Liquid Chromatography, John Wiley and Sons, Inc., New York (1974).

    Google Scholar 

  21. B. L. Karger in: Modern Practice of Liquid Chromatography (J. J. Kirkland, ed.), pp. 3–53, John Wiley and Sons, Inc., New York (1971).

    Google Scholar 

  22. G. J. Kennedy and J. H. Knox, The performance of packings in high performance liquid chromatography (HPLC). 1. Porous and surface layered supports, J. Chromatogr. Sci., 10, 549–556 (1972).

    CAS  Google Scholar 

  23. F. E. Regnier and K. M. Gooding, unpublished results.

    Google Scholar 

  24. S. H. Chang, K. M. Gooding, and F. E. Regnier, High speed liquid chromatography of proteins, J. Chromatogr., 125, 103–114 (1976).

    Article  CAS  Google Scholar 

  25. J. Asshauer and I. Halasz, Reproducibility and efficiency of columns packed with 10 µ silica in liquid chromatography, J. Chromatogr. Sci., 12, 139–147 (1974).

    CAS  Google Scholar 

  26. J. J. Kirkland, Performance of zipax controlled surface porosity support in high speed liquid chromatography, J. Chromatogr. Sci., 10, 129–137 (1972).

    CAS  Google Scholar 

  27. R. E. Majors, High performance liquid chromatography on small particle silica gel, Anal. Chem., 44, 1722–1726 (1972).

    Article  CAS  Google Scholar 

  28. R. M. Cassidy, D. S. LeGay, and R. W. Frei, Study of packing techniques for small-particle silica gels in high-speed liquid chromatography, Anal. Chem., 46, 340–344 (1974).

    Article  CAS  Google Scholar 

  29. J. J. Kirkland, High speed liquid-partition chromatography with chemically bonded organic stationary phases, J. Chromatogr. Sci., 9, 206–214 (1971).

    CAS  Google Scholar 

  30. S. H. Chang, K. M. Gooding, and F. E. Regnier, The use of oxiranes in the preparation of bonded phase supports, J. Chromatogr., 120, 321–333 (1976).

    Article  CAS  Google Scholar 

  31. S. H. Chang, R. Noel, and F. E. Regnier, High speed ion exchange chromatography of proteins, Anal. Chem., 48, 1839–1845 (1976).

    Article  CAS  Google Scholar 

  32. H. Purnell, Gas Chromatography, John Wiley and Sons, Inc., New York, 1962.

    Google Scholar 

  33. E. C. Horning, E. A. Moscatelli, and C. C. Sweeley, Polyester liquid phases in gas-liquid chromatography, Chem. Ind. (London) 1959, 751–752.

    Google Scholar 

  34. R. Roberts, P. D. Henry, S. A. G. J. Witteveen, and B. A. Sobel, Quantification of serum creatine Phosphokinase isoenzyme activity, Am. J. Cardiol., 33, 650–654 (1974).

    Article  CAS  Google Scholar 

  35. V. Anido, R. B. Conn, H. F. Mengoli, and G. Anido, Diagnostic efficacy of myocardial creatine Phosphokinase using Polyacrylamide disk gel electrophoresis, Am.J. Clin. Pathol., 61, 599–605 (1974).

    CAS  Google Scholar 

  36. D. Mercer, Separation of tissue and serum creatine kinase isoenzymes by ion-exchange column chromatography, Clin. Chem., 20, 36–40 (1974).

    CAS  Google Scholar 

  37. P. D. Henry, R. Roberts, and B. E. Sobel, Rapid separation of plasma creatine kinase isoenzymes by batch adsorption on glass beads, Clin. Chem., 21, 844–849 (1975).

    CAS  Google Scholar 

  38. H. A. Sober and E. A. Peterson, Protein chromatography on ion exchange cellulose, Fed. Proc. Fed. Am. Soc. Exp. Biol., 17, 1116–1126 (1958).

    CAS  Google Scholar 

  39. H. J. Keutel, K. Okabe, H. K. Jacobs, F. Ziter, L. Maland, and S. A. Kuby, Studies and adenosine triphosphate transphosphorylase, Arch. Biochem. Biophys., 150, 648–678(1972).

    Article  CAS  Google Scholar 

  40. Y. Birk, A. Gertler, and S. Khalef, A pure trypsin inhibitor from soya beans, Biochem. J., 87, 281–284(1963).

    CAS  Google Scholar 

  41. B. L. Karger, L. R. Snyder, and C. Horvath, An Introduction to Separation Science, John Wiley and Sons, Inc., New York (1973).

    Google Scholar 

  42. L. R. Snyder, Reaction colorimeters as detectors in high performance liquid chromatography. Extra-column band broadening with segmented flow through the reaction coil, Address at the Second International Symposium on Column Liquid Chromatography, Wilmington, Delaware (1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1977 Plenum Press, New York

About this chapter

Cite this chapter

Regnier, F.E., Gooding, K.M., Chang, SH. (1977). High-Speed Liquid Chromatography of Proteins. In: Hercules, D.M., Hieftje, G.M., Snyder, L.R., Evenson, M.A. (eds) Contemporary Topics in Analytical and Clinical Chemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6728-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6728-8_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-6730-1

  • Online ISBN: 978-1-4615-6728-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics