Skip to main content

Porous Flow-Through and Fluidized-Bed Electrodes

  • Chapter
Book cover Comprehensive Treatise of Electrochemistry

Part of the book series: Comprehensive Treatise of Electrochemistry ((CTE))

Abstract

This chapter presents a coherent picture of this relatively recently opened field, rather than giving a review of the latest published work. The aim is to introduce scientists and engineers to the field of three-dimensional electrodes without sacrificing a sound approach for the sake of simplicity. Since these types of electrodes are essentially for industrial application, emphasis is placed on aspects which might affect scale-up and costs. The basic properties of these electrodes are considered in a quantitative manner in the hope of understanding their behavior and, if only in part, predicting their performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Goodridge and C. J. H. King, In: Technique of Electroorganic Synthesis, N. L. Weinberg, Ed., Part I, Chap. 2, pp. 123–127, Wiley, New York (1974).

    Google Scholar 

  2. D. G. Braithwaite, U.S. Patents 3,007,857; 3,256,161; 3,287,248 (Nalco Chem. Co.).

    Google Scholar 

  3. L. L. Bott, U.S. Patent 3,479,274 (Nalco Chem. Co.).

    Google Scholar 

  4. C. M. S. Raats, H. F. Boon, and G. van der Heiden, Fluidized bed electrolysis for the removal or recovery of metals from dilute solutions. International Symposium on Chloride Hydrometallurgy, Brussels, 26–28 September (1977).

    Google Scholar 

  5. R. N. Olson, Essentials of Engineering Fluid Mechanics, pp. 280–287, Intertext Books, London (1966).

    Google Scholar 

  6. C. Orr Jr., Particulate Technology, pp. 192–197, MacMillan, New York (1966).

    Google Scholar 

  7. J. M. Coulson and J. F. Richardson, Chemical Engineering, Vol. I, p. 52, Pergamon Press Ltd., London (1977).

    Google Scholar 

  8. ibid.,Vol. II, p. 129 (1978).

    Google Scholar 

  9. M. Leva, Fluidization, p. 52, McGraw Hill, New York (1959).

    Google Scholar 

  10. B. G. Ateya and L. G. Austin, Steady-state polarization at PETE with small pore diameter I. Reversible kinetics, J. Electrochem. Soc. 124, 83–89 (1977).

    Article  CAS  Google Scholar 

  11. F. Goodridge, D. I. Holden, H. D. Murray, and R. E. Plimley, FBEs. II. Nonuniform behavior of the hydrodynamic entrance region, Trans. Inst. Chem. Eng. 49, 137–141 (1971).

    CAS  Google Scholar 

  12. R. E. Treyball, Mass Transfer Operations,McGraw-Hill, New York (1968).

    Google Scholar 

  13. R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena, Wiley, New York (1960).

    Google Scholar 

  14. T. K. Sherwood, R. L. Pigford, and C. R. Wilke, pp. 159–171, Mass Transfer, McGraw-Hill, New York (1975).

    Google Scholar 

  15. A. A. Wragg, Application of the limiting diffusion current technique in chemical engineering, The Chem. Eng. 39–44, 49 (1977).

    Google Scholar 

  16. D. N. Bennion and J. Newman, Electrochemical removal of copper ions from very dilute solutions, J. Appl. Electrochem. 2, 113–122 (1972).

    Article  CAS  Google Scholar 

  17. Reference 12, pp. 411 and 679.

    Google Scholar 

  18. T. Miyauchi and T. Nomura, Liquid-film mass-transfer coefficient for packed beds in the low Reynolds number region, Int. Chem. Eng. 12, 360–366 (1972).

    Google Scholar 

  19. A. J. Karabelas, T. H. Wegner, and T. J. Hanratty, Use of asymptotic relations to correlate mass transfer rates in packed beds, Chem. Eng. Sci. 26, 1581–1589 (1971).

    Article  CAS  Google Scholar 

  20. K. R. Jolis and T. J. Hanratty, Use of electrochemical techniques to study mass transfer rates and local skin friction to a sphere in a dumped bed, AIChE J. 15, 199–205 (1969).

    Article  Google Scholar 

  21. W. J. Beek, In: Fluidisation, J. F. Davidson and D. Harrison, Eds., Chap. 9, pp. 431–470, Academic Press, London (1971).

    Google Scholar 

  22. A. Storck, F. Vergnes, and P. Le Goff, Transfert de matière entre un electrolyte et une paroi cylindrique immergée dans un lit fixe ou fluidisé de grains isolants, Powder Technol. 12, 215–223 (1975).

    Article  CAS  Google Scholar 

  23. F. Goodridge and D. V. Nassif, unpublished work.

    Google Scholar 

  24. D. J. Pickett, Electrochemical Reactor Design, p. 162, Elsevier, Oxford (1977).

    Google Scholar 

  25. C. Wagner, Theoretical analysis of the current density distribution in electrolytic cells, J. Electrochem. Soc. 98, 116–128 (1951).

    Article  CAS  Google Scholar 

  26. E. A. Grens II, On the assumptions underlying theoretical models for flooded porous electrodes, Electrochim. Acta 15, 1047–1057 (1970).

    Article  CAS  Google Scholar 

  27. J. Newman and W. Tiedemann, Porous-electrode theory with battery applications, AIChE J. 21, 25–41 (1975).

    Article  CAS  Google Scholar 

  28. J. S. Newman and C. W. Tobias, Theoretical analysis of current distribution in porous electrodes, J. Electrochem. Soc. 109, 1183–1191 (1962).

    Article  CAS  Google Scholar 

  29. J. Euler and W. Nonnemacher, Stromverteilung in Porosen Elektroden, Electrochim. Acta 2, 268–286 (1960).

    Article  CAS  Google Scholar 

  30. M. Paulin, D. Hutin, and F. Coeuret, Theoretical and experimental study of flow-through porous electrodes, J. Electrochem. Soc. 124, 180–188 (1977).

    Article  CAS  Google Scholar 

  31. G. Kreysa and E. Heitz, Reaktions-und verfahrenstechnische Aspekte elektrochemischer Fest-und Wirbelbett-Zellen, Chem.-Ing.-Tech. 48, 852–860 (1976).

    Article  CAS  Google Scholar 

  32. G. Kreysa and E. Heitz, The similarity law of effective height of packed bed electrodes, Electrochim. Acta 20, 919–921 (1975).

    Article  CAS  Google Scholar 

  33. M. Fleischmann and J. W. Oldfield, FBEs. I. Polarization predicted by simplified models, J. Electroanal. Chem. 29, 211–230 (1971).

    Article  CAS  Google Scholar 

  34. F. Goodridge, D. I. Holden, H. D. Murray, and R. E. Plimley, FBE. I. A mathematical model of the FBE, Trans. Inst. Chem. Eng. 49, 128–136 (1971).

    Google Scholar 

  35. R. Alkire and P. K. Ng, Two-dimensional current distribution within a packed-bed electrochemical flow reactor, J. Electrochem. Soc. 121, 95–103 (1974).

    Article  CAS  Google Scholar 

  36. R. Alkire and B. Gracon, Flow-through porous electroces, J. Electrochem. Soc. 122, 15941601 (1975).

    Google Scholar 

  37. R. E. Sioda, The ECE mechanism in flow electrolysis in porous electrodes under conditions of limiting current, Electrochim. Acta 20, 457–461 (1975).

    Article  CAS  Google Scholar 

  38. A. K. P. Chu, M. Fleishmann, and G. J. Hills, Packed-bed electrodes. I. The electrochemical extraction of copper ions from dilute aqueous solutions, J. Appl. Electrochem. 4, 323–330 (1974).

    Article  CAS  Google Scholar 

  39. R. Alkire and P. K. Ng, Studies on flow-by porous electrodes having perpendicular directions of current and electrolyte flow, J. Electrochem. Soc. 124, 1220–1227 (1977).

    Article  CAS  Google Scholar 

  40. F. Goodridge and B. M. Ismail, The anodic behavior of packed and fluidised bed electrodes, Inst. Chem. Eng. Symp. Ser. 37, 1.29–1. 52 (1971).

    Google Scholar 

  41. R. E. Sioda, Current-potential dependence in the flow electrolysis on a porous electrode, J. Electroanal. Chem. 34, 399–409 (1972).

    Article  CAS  Google Scholar 

  42. R. Alkire and R. Gould, Analysis of multiple reaction sequences in flow-through porous electrodes, J. Electrochem. Soc. 123, 1842–1849 (1976).

    Article  CAS  Google Scholar 

  43. J. A. Trainham and J. Newman, A flow-through porous electrode model: Application to metal-ion removal from dilute streams, J. Electrochem. Soc. 124, 1528–1540 (1977).

    Article  CAS  Google Scholar 

  44. B. G. Ateya and L. G. Austin, Steady-state polarization at PFTE with small pore diameter. II. Irreversible kinetics for one-electron and consecutive two-electron transfer reactions, J. Electrochem. Soc. 124, 1540–1548 (1977).

    Article  CAS  Google Scholar 

  45. P. J. Ayre and F. Goodridge, unpublishéd work.

    Google Scholar 

  46. S. Germain and F. Goodridge, Copper deposition in a fluidized bed cell, Electrochim. Acta 21, 545–550 (1976).

    Article  CAS  Google Scholar 

  47. R. S. Wenger and D. N. Bennion, Electrochemical concentrating and purifying from dilute copper solutions, J. Appl. Electrochem. 6, 385–396 (1976).

    Article  CAS  Google Scholar 

  48. W. Tiedemann and J. Newman, Double-layer capacity determination of porous electrodes, J. Electrochem. Soc. 122, 70–74 (1975).

    Article  CAS  Google Scholar 

  49. T. Katan and H. F. Bauman, Relating structural variables of porous electrodes, J. Electrochem. Soc. 122, 77–80 (1975).

    Article  CAS  Google Scholar 

  50. R. E. Meredith and C. W. Tobias, In: Advances in Electrochemistry and Electrochemical Engineering, C. W. Tobias, Ed., Vol. 2, pp. 15–47 (1962).

    Google Scholar 

  51. M. Fleischmann and J. W. Oldfield, FBEs. II. The effective resistivity of the discontinuous metal phase, J. Electroanal. Chem. 29, 231–240 (1971).

    Article  CAS  Google Scholar 

  52. A. A. C. M. Beenackers, W. P. M. van Swaaij, and A. Welmers, Mechanism of charge transfer in the discontinuous metal phase of a FBE, Electrochim. Acta 22, 1277–1281 (1977).

    Article  CAS  Google Scholar 

  53. M. Fleishmann and G. H. Kelsall, An investigation of the local behaviour of a copper FBE, Chem. and Ind., 329–330 (1975).

    Google Scholar 

  54. R. E. Plimey and A. R. Wright, unpublished work.

    Google Scholar 

  55. Reference 1, pp. 135–137.

    Google Scholar 

  56. L. L. Bott, How Nalco makes lead alkyls, Hydrocarbon Process. Petrol. Refiner 44, 115–118 (1965).

    CAS  Google Scholar 

  57. R. W. Houghton and A. T. Kuhn, Antimony removal from dilute solutions using a restrained bed electrochemical reactor, J. Appl. Electrochem. 4, 69–73 (1974).

    Article  Google Scholar 

  58. J. A. Trainham and J. Newman, A thermodynamic estimation of the minimum concentration attainable in a flow-through porous electrode reactor, J. Appl. Electrochem. 7, 287–297 (1977).

    Article  CAS  Google Scholar 

  59. G. A. Carlson, U.S. Patent 3,647,653 (PPG Industries).

    Google Scholar 

  60. J. R. Backhurst, J. M. Coulson, F. Goodridge, R. E. Plimley, and M. Fleishmann, Preliminary investigation of FBE, J. Electrochem. Soc. 116, 1600–1607 (1969).

    Article  Google Scholar 

  61. J. R. Backhurst, F. Goodridge, R. E. Plimley, and M. Fleischmann, Some aspects of a fluidized Zn/oxygen electrode system, Nature 211, 55–57 (1969).

    Article  Google Scholar 

  62. D. S. Flett, The electrowinning of copper from dilute copper sulfate solutions with a FBE, Chem. and Ind. 300–302 (1971).

    Google Scholar 

  63. D. S. Flett, The FBE in extractive metallurgy, Chem. and Ind. 983–988 (1972).

    Google Scholar 

  64. M. Fleischmann, J. W. Oldfield, and L. Tennakoon, FBEs. IV. Electrodeposition of copper in a fluidised bed of copper-coated spheres, J. Appl. Electrochem. 1, 103–112 (1971).

    Article  CAS  Google Scholar 

  65. B. Surfleet and V. A. Crowle, Quantitative recovery of metals from dilute copper sulphate solutions, Trans. Inst. Met. Finish 50, 227–232 (1972).

    CAS  Google Scholar 

  66. J. A. E. Wilkinson and K. P. Haines, Feasibility study on the electrowinning of copper with FBEs, Trans. Inst. Min. Met. 81, C157–162 (1972).

    Google Scholar 

  67. F. Goodridge and C. J. Vance, Copper deposition in a pilot-plant-scale fluidized-bed cell, Electrochim. Acta. 24, 1237–1242 (1979).

    Article  CAS  Google Scholar 

  68. F. Goodridge and C. J. Vance, The electrowinning of zinc using a circulating bed electrode, Electrochim. Acta 22, 1073–1976 (1977).

    Article  CAS  Google Scholar 

  69. F. Goodridge and K. Scott, unpublished work.

    Google Scholar 

  70. M. Fleischmann, F. Goodridge, and C. J. Vance, Patent Application 41622/75.

    Google Scholar 

  71. F. Goodridge, C. J. H. King, and A. R. Wright, The behavior of bipolar packed-bed electrodes, Electrochim. Acta 22, 347–352 (1977).

    Article  CAS  Google Scholar 

  72. F. Goodridge, C. J. H. King, and A. R. Wright, Performance studies on a bipolar FBE, Electrochim. Acta 22, 1087–1091 (1977).

    Article  CAS  Google Scholar 

  73. R. Alkire, A theoretical study of bipolar porous electrodes, J. Electrochem. Soc. 120, 900–905 (1973).

    Article  CAS  Google Scholar 

  74. J. L. Lloyd, C. J. H. King, and A. R.Wright, unpublished work.

    Google Scholar 

  75. S. Hartland and A. J. M. Spencer, Electrolytic dissolution in a potential gradient, Trans. Inst. Chem. Eng. 41, 328–335 (1963).

    CAS  Google Scholar 

  76. M. Fleischmann, J. W. Oldfield, and C. L. K. Tennakoon, The electrochemical bipolar particulate cell, Inst. Chem. Eng. Symp. Ser. 37, 1.53–1. 69 (1971).

    Google Scholar 

  77. C. J. H. King and A. R. Wright, Current distribution in a thin film bipolar electode system, Electrochim. Acta 22, 1135–1139 (1977).

    Article  CAS  Google Scholar 

  78. C. J. H. King, K. Lister, and R. E. Plimley, A novel bipolar electrolytic flow cell for synthesis, Trans. Inst. Chem. Eng. 53, 20–25 (1975).

    CAS  Google Scholar 

  79. D. C. Eardly, D. Handley, and S. P. S. Andrew, Bipolar electrolysis with intraphase conduction in two phase media, Electrochim. Acta 18, 839–848 (1973).

    Article  Google Scholar 

  80. D. Handley and D. C. Eardly, Bipolar electrolysis with intraphase conduction in fluidized beds, Chem. and Ind. 330–332 (1975).

    Google Scholar 

  81. O. B. Osifade, The production of propylene oxide by an electrochemical method using a bipolar packed bed cell, Ph.D. thesis, University of Newcastle upon Tyne, England (1972).

    Google Scholar 

  82. A. V. Bousoulengas, Bipolar trickle-bed reactors, Ph.D. thesis, University of Southampton, England (1976).

    Google Scholar 

  83. M. Mitzlaff, DOS 23 37 016. (Farbwerke Hoechst AG.).

    Google Scholar 

  84. P. Gallone, Achievements and tasks of electrochemical engineering, Electrochim. Acta 22, 913–920 (1977).

    Article  CAS  Google Scholar 

  85. J. H. Shockor, U.S. Patent 3,692,661 (Resource Control Inc.).

    Google Scholar 

  86. Anonymous, Electrolysis speeds up waste treatment, Environ. Sci. Technol. 4, 201 (1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer Science+Business Media New York

About this chapter

Cite this chapter

Goodridge, F., Wright, A.R. (1983). Porous Flow-Through and Fluidized-Bed Electrodes. In: Yeager, E., Bockris, J.O., Conway, B.E., Sarangapani, S. (eds) Comprehensive Treatise of Electrochemistry. Comprehensive Treatise of Electrochemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6690-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6690-8_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-6692-2

  • Online ISBN: 978-1-4615-6690-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics