Skip to main content

Electrochemical Energy Conversion—Principles

  • Chapter
Comprehensive Treatise of Electrochemistry

Abstract

The history of fuel cells, since their discovery by Sir William Grove in 1839 and until the early fifties, has been covered in great detail in several publications(1–10) The main impetus to fuel cells was in the late fifties when known solar, nuclear, and chemical conversion systems were being considered as power sources for NASA’s space programs. These were rated with respect to weight, reliability, safety, power capability, and tolerance to the mission environmental profile. The fuel cell system ranked best, which resulted in the development of the General Electric solid polymer electrolyte fuel cells for the Gemini Space Program and the Pratt and Whitney alkaline (Bacon-type) fuel cell for the Apollo flights in the sixties. The potential advantages of fuel cells stimulated an enthusiastic research and development program on fuel cells for terrestrial applications, in addition to space applications. However, because of the high cost of fuel cells, noble metal requirements, and short life, the interest in fuel cells for terrestrial applications declined in the late sixties. Fuel cell activity was revived in the early seventies and was greatly enhanced in 1973 after the energy crisis, mainly for electric power generation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. W. Angrist, Direct Energy Conversion, Allyn and Bacon, Englewood Cliffs, New Jersey (1964).

    Google Scholar 

  2. S. L. Chang, Energy Conversion, Prentice-Hall, Englewood Cliffs, New Jersey (1963).

    Google Scholar 

  3. H. A. Liebhafsky and E. J. Cairns, Fuel Cells and Fuel Batteries, John Wiley & Sons, New York (1968).

    Google Scholar 

  4. K. R. Williams, An Introduction to Fuel Cells, Elsevier, Amsterdam (1966).

    Google Scholar 

  5. W. Vielstich, Fuel CellsModern Processes for the Electrochemical Production of Energy (translated by D. J. G. Ives), John Wiley & Sons, New York (1970).

    Google Scholar 

  6. E. Justi and A. Winsel, Fuel CellsKalte Verbrennung, Steiner, Wiesbaden (1962).

    Google Scholar 

  7. J. O’M. Bockris and S. Srinivasan, Fuel CellsTheir Electrochemistry, McGraw-Hill, New York (1969).

    Google Scholar 

  8. W. Mitchell, Fuel Cells, Academic Press, New York (1963).

    Google Scholar 

  9. D. R. Adams, P. Y. Cathou, R. E. Gaynor, R. D. Jackson, Jr., J. H. Kirsch, L. L. Leonhard, G. S. Lockwood, Jr., W. P. Warnock, and R. E. Wilcox, Jr., Fuel CellsPower for the Future, Fuel Cell Research Associates, Cambridge, Massachusetts (October 1960).

    Google Scholar 

  10. C. Berger, ed., Handbook of Fuel Cell Technology, Prentice-Hall, Englewood Cliffs, New Jersey (1968).

    Google Scholar 

  11. A. J. Appleby, Electrocatalysis, in Modern Aspects of Electrochemistry, B. E. Conway and J. O’M. Bockris, eds., Vol. 9, Plenum Press, New York (1974), p. 369.

    Google Scholar 

  12. P. Stonehart and P. N. Ross, The commonality of surface processes in electrocatalysis and gas-phase heterogeneous catalysis, Catal. Rev. Sci. Eng. 12(1), 1 (1975).

    CAS  Google Scholar 

  13. B. D. McNicol, Electrocatalysis, Catalysis 2, 243 (1978).

    CAS  Google Scholar 

  14. A. P. Fickett, Fuel cell electrocatalysis—Where have we failed, in Proceedings of the Symposium on Electrode Materials and Processes for Energy Conversion and Storage, Vol. 77–6, J. D. E. Mclntyre, S. Srinivasan, and F. G. Will, eds, The Electrochemical Society, Princeton, New Jersey (1977), p. 546.

    Google Scholar 

  15. H. R. Kunz, The state-of-the-art of hydrogen-air phosphoric acid electrolyte fuel cells, in Proceedings of the Symposium on Electrode Materials and Processes f or Energy Conversion and Storage, Vol. 77–6, J. D. E. Mclntyre, S. Srinivasan, and F. G. Will, eds., The Electrochemical Society, Princeton, New Jersey (1977), p. 607.

    Google Scholar 

  16. F. von Sturm, Electrocatalytic oxidation of non-noble metal catalysts, in Proceedings of the Symposium on Electrode Materials and Processes for Energy Conversion and Storage, Vol. 77–6, J. D. E. Mclntyre, S. Srinivasan, and F. G. Will, eds., The Electrochemical Society, Princeton, New Jersey (1977), p. 247.

    Google Scholar 

  17. H. Behret, H. Binder, and G. Sandstede, Inorganic and organic non-noble metal containing electrocatalysis for fuel cells, in Proceedings of the Symposium on Electrocatalysis, M. W. Breiter, ed., The Electrochemical Society, Princeton, New Jersey (1974), p. 303.

    Google Scholar 

  18. G. Luft, K. Mund, G. Richter, R. Schulte, and F. von Sturm, New electrocatalysts for acid fuel cells, Siemens Forsch, Entwicklungsber. 3, 177 (1974).

    CAS  Google Scholar 

  19. K. Mund, G. Richter, R. Schulte, and F. von Sturm, Electrokatalyse an Phosphiden der Eisengruppe und Einigen Temaren Verbindungen, Ber. Bunsenges, Phys. Chem. 77, 839 (1973).

    CAS  Google Scholar 

  20. H. Böhm and F. A. Pohl, Wolframcarbid, ein Elektrokatalysator für saure Brennstoffzellen, Wiss. Ber. AEG-Telef unken, 41, 46 (1968).

    Google Scholar 

  21. K. von Benda, H. Binder, A. Kohling, and G. Sandstede, Electrochemical behaviour of tungsten carbide electrodes, in From Electrocatalysis to Fuel Cells, G. Sandstede, ed., University Washington Press, Seattle (1972), p. 87.

    Google Scholar 

  22. K. Mund, G. Richter, and F. von Sturm, Titanium-containing Raney nickel catalyst for hydrogen electrodes in alkaline fuel cell systems, J. Electrochem. Soc. 124, 1 (1977).

    CAS  Google Scholar 

  23. H. H. Boehm, Oxygen electrode, German patent 2,202,898 (1973).

    Google Scholar 

  24. H. Behret, H. Binder, W. Clauberg, and G. Sandstede, On the mechanism of electrocatalytic oxygen reduction with special reference to metal chelates, in Proceedings of the Symposium on Electrode Materials and Processes for Energy Conversion and Storage, Vol. 77–6, J. D. E. Mclntyre, S. Srinivasan, and F. G. Will, eds., The Electrochemical Society, Princeton, New Jersey (1977), p. 519.

    Google Scholar 

  25. E. B. Yeager, Improved cathodes for phosphoric acid fuel cells, EPRI EM-505, Research Project 634–1, Final Report, June, 1977.

    Google Scholar 

  26. K. Hohne, Air electrodes for hydrogen-air fuel cells with alkaline electrolyte, Siemens Forsch. Entmcklungsber. 5, 266 (1976).

    Google Scholar 

  27. H. L. Bevan and A. C. C. Tseung, The electrochemical reduction of oxygen on high surface area lithium doped oxides, Electrochim. Acta 19, 201 (1974).

    CAS  Google Scholar 

  28. A. M. Trunov, V. A. Presnov, M. V. Uminskii, O. F. Rakityanskaya, T. S. Bakutina, and A. I. Kotseruba, Oxygen reduction at semi-conductor catalysts—V. Investigation of physical and electrochemical properties of mixed nickel-cobalt oxides, Sov. Electrochem. 11, 509 (1975).

    Google Scholar 

  29. R. Kh. Burshtein, V. S. Vilinskaya, M. R. Tarasevich, and N. G. Bulavina, Electrocatalytic properties of oxide catalysts on a carbon carrier, React. Kinet. Catal. Lett. 4, 159 (1976).

    CAS  Google Scholar 

  30. A. C. C. Tseung and H. L. Bevan, A reversible oxygen electrode, J. Electroanal. Chem. 45, 429 (1973).

    CAS  Google Scholar 

  31. A. A. Adams and H. J. Barger, Jr., A new electrolyte for hydrocarbon air fuel cells, J. Electrochem. Soc. 121, 987 (1974).

    CAS  Google Scholar 

  32. G. W. Walker, H. J. Barger, Jr., and A. A. Adams, The oxidation of carbon monoxide in CF3SO3H • H2O, Electrochem. Soc. Ext. Abstr. 75–1, 102 (1975).

    Google Scholar 

  33. H. Binder, A. Köhling, and G. Sandstede, Platinum catalysts modified by adsorption or mixing with inorganic substances, in From Electrocatalysis to Fuel Cells, G. Sandstede, ed., University of Washington Press, Seattle (1972), p. 59.

    Google Scholar 

  34. J. A. Shropshire, Flow coulometry, J. Electroanal. Chem. 9, 90 (1965).

    CAS  Google Scholar 

  35. M. M. P. Janssen and J. Moolhuysen, Platinum-tin catalysts for methanol fuel cells prepared by a novel immersion technique, by electrodeposition, and by alloying, Electrochim. Acta. 21, 861 (1976).

    CAS  Google Scholar 

  36. B. D. McNicol, R. T. Short, and A. G. Chapman, Methanol electro-oxidation catalysts, J. Chem. Soc. Faraday Trans. 72, 2735 (1976).

    CAS  Google Scholar 

  37. R. R. Adzic, D. N. Simic, A. R. Despic, and D. M. Drazic, Electrocatalysis by foreign metal monolayers: Oxidation of formic acid on platinum, J. Electroanal. Chem. 65, 587 (1975).

    CAS  Google Scholar 

  38. V. E. Kazarinov, V. N. Andreev, and G. Ya. Tysyachnaya, Carbon monoxide and carbon dioxide chemisorption products on platinized platinum, Electrokhimiya 8, 927 (1972).

    CAS  Google Scholar 

  39. A. Capon and R. Parsons, The oxidation of formic acid at noble metal electrodes—Part III. Intermediates and mechanism on platinum electrodes, J. Electroanal. Chem. 45, 205 (1973).

    CAS  Google Scholar 

  40. Yu. B. Vasilev, V. S. Bagotskii, and O. A. Khazova, General scheme for chemisorption, electroxidation, and electroreduction processes of simple organic substances at platinum group metals, Sov. Electrochem. 11, 1406 (1975).

    Google Scholar 

  41. Y. Nishiyama and H. Wise, Surface interactions between chemisorbed species on platinum: Carbon monoxide, hydrogen, oxygen, and methanol, J. Catal. 32, 50 (1974).

    CAS  Google Scholar 

  42. M. Watanabe and S. Motoo, Electrocatalysis by ad-atoms—Part IL Enhancement of the oxidation of methanol on platinum by ruthenium ad-atoms, J. Electroanal. Chem. 60, 267 (1975).

    CAS  Google Scholar 

  43. M. Watanabe, T. Suzuki, and S. Motoo, Electrocatalytic activities of noble metal alloys for the oxidation of fuels—IV. Electrocatalytic activities of rhodium-ruthenium, rhodium-osmium, platinum-rhodium, and platinum-iridium alloy blacks for the oxidation of methanol and sodium formate, Denki Kagaku 40, 210 (1972).

    CAS  Google Scholar 

  44. V. Sh. Palanker, R. A. Gajyev, and D. V. Sokolsky, On adsorption and electro-oxidation of some compounds on tungsten carbide; their effect on electro-oxidation, Electrochim. Acta 22, 133 (1977).

    CAS  Google Scholar 

  45. G. Schulz-Ekloff, D. Baresel, and J. Heidemeyer, Influence of competitive adsorption of water and fuel on the activity of anodes in fuel cells, Collect. Czech, Chem. Commun. 36, 928 (1971).

    CAS  Google Scholar 

  46. K. Kinoshita, J. A. S. Bett, and P. Stonehart, Effects of gas- and liquid-phase environments on the sintering behavior of platinum catalysts, in Sintering and Catalysis, G. C. Kuczynski, ed., Plenum Press, New York (1976).

    Google Scholar 

  47. K. Kinoshita, Effects of sintering on porous fuel cell electrodes, paper presented at the 151st Electrochemical Society Meeting, Philadelphia, 1977.

    Google Scholar 

  48. Y. C. Pan and G. Ciprios, Phosphoric acid catalyst sintering, in National Fuel Cells Seminar, San Francisco, California, Extended Abstracts, p. 79, July 11–13, 1978.

    Google Scholar 

  49. J. C. Schlatter, Sintering of supported metals, Mat. Sci. Res. 10, 141 (1975).

    CAS  Google Scholar 

  50. P. Wynblatt and N. A. Gjostein, Supported metal crystallites, Prog. Solid State Chem. 9, 21 (1975).

    CAS  Google Scholar 

  51. E. Ruckenstein and B. Pulvermacher, Kinetics of crystallite sintering during heat treatment of supported metal catalysts, AIChE J. 19, 356 (1973).

    CAS  Google Scholar 

  52. E. Ruckenstein and B. Pulvermacher, Growth kinetics and the size distributions of supported metal crystallites, J. Catal. 29, 224 (1973).

    CAS  Google Scholar 

  53. P. C. Flynn and S. E. Wanke, A model of supported metal catalyst sintering—I. Development of model, J. Catal. 34, 390 (1974).

    CAS  Google Scholar 

  54. P. C. Flynn and S. E. Wanke, A model of supported metal catalyst sintering—II. Application of model, J. Catal. 34, 400 (1974).

    CAS  Google Scholar 

  55. A. C. C. Tseung, Inhibition of sintering in molten carbonate fuel cell anodes, J. Appl. Electrochem. 1, 279(1971).

    Google Scholar 

  56. B. S. Baker, S. Abens, and D. Rigney, Molten carbonate fuel cells—A technical philosophy, ERDA/EPRI Seminar, Palo Alto, California, June 29-July 1, 1976).

    Google Scholar 

  57. M. S. Freed and R. J. Lawrence, Development of gold alloy catalyst cathode for alkaline fuel cells, paper presented at the 147th Electrochemical Society Meeting, Toronto, 1975.

    Google Scholar 

  58. W. Phillips, E. Desloge, and J. Skofronick, A mechanism to account for observed morphological changes in discontinuous gold films following deposition, J. Appl. Phys. 39, 3210(1968).

    CAS  Google Scholar 

  59. K. F. Blurton, H. R. Kunz, and D. R. Rutt, Surface area loss of platinum supported on graphite, Electrochim. Acta. 23, 183 (1978).

    CAS  Google Scholar 

  60. G. Ciprios, Y. C. Pan, and S. C. Fung, Catalyst sintering in phosphoric acid electrolyte, ERDA/EPRI Seminar, Palo Alto, California, June 29-July 1, 1976.

    Google Scholar 

  61. Yu. G. Chirkov, Difference between hydrophobic and hydrophilic electrodes—I. Effect of pore corrugation, Sov. Electrochem. 8, 1480 (1972).

    Google Scholar 

  62. Yu. G. Chirkov, Difference between hydrophobized and hydrophilic electrodes—II. Biporous model, Sov. Electrochem. 10, 1710 (1974).

    Google Scholar 

  63. Yu. G. Chirkov, Difference between hydrophobized and hydrophilic electrodes—V. Role of electrode structure, Sov. Electrochem. 11, 503 (1975).

    Google Scholar 

  64. S. K. Rangarajan, Theory of porous electrode operations, Curr. Sci. 40(8), 175 (1971).

    CAS  Google Scholar 

  65. O. S. Ksenzhek, Mechanism of the functioning of porous electrodes, Fuel CellsTheir Electrochemical Kinetics, V. S. Bagotskii and Yu. B. Vasilev, eds., Consultants Bureau, New York (1966).

    Google Scholar 

  66. A. G. Pshenichnikov, Some aspects of the performance of porous gas diffusion electrodes, Fuel CellsTheir Electrochemical Kinetics, V. S. Bagotskii and Yu. B. Vasilev, eds., Consultants Bureau, New York (1966).

    Google Scholar 

  67. V. S. Markin, A. A. Chernenko, Yu. A. Chizmadzhev, and Yu. G. Chirkov, Aspects of the theory of porous gas diffusion electrodes, Fuel CellsTheir Electrochemical Kinetics, V. S. Bagotskii and Yu. B. Vasilev, eds., Consultants Bureau, New York (1966).

    Google Scholar 

  68. K. M. Mehta and V. K. Venkatesan, A probability model for a non-uniform gas porous electrodes, Trans. SAEST 11, 411 (1976).

    CAS  Google Scholar 

  69. L. G. Austin, The electrochemical theory of fuel cells, in Handbook of Fuel Cell Technology, C. Berger, ed., Prentice-Hall, Englewood Cliffs, New Jersey (1968).

    Google Scholar 

  70. M. Eisenberg, Electrochemical energy conversion, in Physical ChemistryAn Advanced Treatise, Vol. IXB, Electrochemistry, H. Eyring, ed., Academic Press, New York (1970).

    Google Scholar 

  71. V. S. Bagotskii and Yu. B. Vasilev, eds., Fuel CellsTheir Electrochemical Kinetics, Consultants Bureau, New York (1966).

    Google Scholar 

  72. Yu. A. Chizmadzhev, V. S. Markin, M. R. Tarasevich, and Yu. G. Chirkov, Macrokinetics of Processes in Porous Media (in Russian), Nauka, Moscow (1971).

    Google Scholar 

  73. M. Breiter, Electrochemical Processes in Fuel Cells, Springer-Verlag, New York (1969).

    Google Scholar 

  74. R. deLevie, Electrochemical responses of porous and rough electrodes, Adv. Electrochem. Electrochem. Eng. 6, 329 (1967).

    CAS  Google Scholar 

  75. Yu. A. Chizmadzhev, Some problems of the theory of porous gas electrodes, Sov. Electrochem. 2, 1 (1966).

    Google Scholar 

  76. S. Srinivasan, H. D. Hurwitz, and J. O’M. Bockris, Fundamental equations of electrochemical kinetics at porous gas-diffusion electrodes, J. Chem. Phys. 46, 3108 (1967).

    CAS  Google Scholar 

  77. S. Srinivasan and H. D. Hurwitz, Theory of a thin film model of porous gas-diffusion electrodes, Electrochem. Acta 12, 495 (1967).

    CAS  Google Scholar 

  78. J. O’M. Bockris and B. D. Cahan, Effect of a finite-contact-angle meniscus on kinetics in porous electrode systems, J. Chem. Phys. 50, 1307 (1969).

    CAS  Google Scholar 

  79. L. G. Austin, M. Ariet, R. D. Walker, G. B. Wood, and R. H. Comyn, Simple-pore and thin-film models of porous gas-diffusion electrodes, I&EC Fund. 4, 321 (1965).

    CAS  Google Scholar 

  80. E. A. Grens, R. M. Turner, and T. Katan, A model for analysis of porous gas electrodes, Adv. Energy Conv. 4, 109 (1964).

    CAS  Google Scholar 

  81. E. A. Grens, II, Analysis of operation of porous gas electrodes with two superimposed scales of pore structure, I&EC Fund. 5, 542 (1966).

    CAS  Google Scholar 

  82. A. G. Pshenichnikov, Mechanism for the operation of a hydrophilic porous-gas electrode, Sov. Electrochem. 6, 644 (1970).

    Google Scholar 

  83. A. G. Pshenichnikov, Yu. I. Kryukov, R. Kh. Burshtein, I Astakhov, and V. V. Surikov, Models for porous hydrophobically treated electrodes, Sov. Electrochem. 12, 1183 (1976).

    Google Scholar 

  84. Yu. G. Chirkov, Capillary equilibrium in hydrophobized electrodes, IV. Model of differently sized grains: r c > r t , Sov . Electrochem. 8, 358 (1972).

    Google Scholar 

  85. J. Giner and C. Hunter, The mechanism of operation of the Teflon bonded gas diffusion electrode: A mathematical model, J. Electrochem. Soc. 116, 1124 (1969).

    CAS  Google Scholar 

  86. J. Giner, The structure of hydrophobic gas-diffusion electrodes, in From Electrocatalysis to Fuel Cells, G. Sandstede, ed., University of Washington Press, Seattle (1972).

    Google Scholar 

  87. R. Kh. Burshtein, A. V. Dribinskii, M. R. Tarasevich, Yu. A. Chizmadzhev, and Yu. G. Chirkov, Mechanism of current generation of water repellent gaseous diffusion electrodes. I., Sov. Electrochem. 7, 1762 (1971).

    Google Scholar 

  88. R. K. Burshtein, A. V. Dribinskii, M. R. Tarasevich, Yu. A. Chizmadzhev, and Yu. G. Chirkov, Mechanism of current generation in hydrophobized gas diffusion electrodes. II. Dependence of the electrochemical activity on the hydrophobizing agent in the active layer, Sov. Electrochem. 8, 195 (1972).

    Google Scholar 

  89. Yu. G. Chirkov, Difference between hydrophobized and hydrophilic electrodes. III. Cylindrical gas pore model, Sov. Electrochem. 11, 36 (1975).

    Google Scholar 

  90. Yu. G. Chirkov and Yu. A. Chizmadzhev, Mechanism of current generation in water proofed electrodes, Trans. SAEST 7, 11 (1972).

    CAS  Google Scholar 

  91. K. Mund and F. von Sturm, Degree of utilization and specific effective surface area of electrocatalysts in porous electrodes, Electrochim. Acta 20, 463 (1975).

    CAS  Google Scholar 

  92. A. D. S. Tantrum and A. C. C. Tseung, Structure and performance of hydrophobic gas electrodes, Nature 221, 167 (1969).

    Google Scholar 

  93. F. A. Posey and T. Morozumi, Theory of potentiostatic and galvanostatic charging of the double layer in porous electrodes, J. Electrochem. Soc. 113, 176 (1966).

    CAS  Google Scholar 

  94. W. Tiedemann and J. Newman, Double-layer capacity determination of porous electrodes, J. Electrochem. Soc. 122, 70 (1975).

    CAS  Google Scholar 

  95. L. G. Austin and E. G. Gagnon, The triangular voltage sweep method for determining double-layer capacity of porous electrodes. Part 1. Theory, J. Electrochem. Soc. 120, 251 (1973).

    CAS  Google Scholar 

  96. J. McHardy, J. M. Barris, and P. Stonehart, Investigation of hydrophobic porous electrodes. 1. Differential capacitance by a low frequency ac impedance technique, J. Appl. Electrochem. 6, 371 (1976).

    CAS  Google Scholar 

  97. B. V. Tilak, C. G. Rader, and S. K. Rangarajan, Techniques for characterizing porous electrodes. I. Determination of the double-layer capacity, J. Electrochem. Soc. 124, 1879 (1977).

    CAS  Google Scholar 

  98. J. O’M. Bockris and S. Srinivasan, Elucidation of the mechanism of electrolytic hydrogen evolution by the use of H-T separation factors, Electrochim. Acta 9, 31 (1964).

    CAS  Google Scholar 

  99. O. S. Abramzon, S. F. Cherynshov, and A. G. Pshenichnikov, Specific surface areas of exchange currents of the hydrogen ionization and evolution reaction for different nickel catalysts, Sov. Electrochem. 12, 1520 (1976).

    Google Scholar 

  100. S. K. Rangarajan, On linear relaxation methods, J. Electroanal. Chem. 41, 459 (1973).

    CAS  Google Scholar 

  101. S. K. Rangarajan, An exponential relaxation technique— theory, J. Electroanal. Chem. 41, 491 (1973).

    CAS  Google Scholar 

  102. G. Prabhakara Rao and S. K. Rangarajan, A new relaxation method for studying electrode reactions, J. Electroanal. Chem. 41, 473 (1973).

    Google Scholar 

  103. G. P. Rao, S. K. Lakshmanan, and S. K. Rangarajan, Decreasing current ramp technique for the study of fast electrode reactions, J. Electroanal. Chem. 62, 273 (1975).

    CAS  Google Scholar 

  104. B. V. Tilak, C. G. Rader, and S. K. Rangarajan, Insights into the determination of the double-layer capacity of porous electrodes, paper presented at 70th Annual Meeting of A.I.Ch.E., November 13–17, 1977.

    Google Scholar 

  105. E. A. Grens, II, and C. W. Tobias, Analysis of the dynamic behaviour of flooded porous electrodes, Ber. Bunsenges. Phys. Chem. 68, 236 (1964).

    CAS  Google Scholar 

  106. S. K. Rangarajan, Theory of flooded porous electrodes—I. Galvanostatic transients and generalized impedance, J. Electroanal. Chem. 22, 89 (1969).

    CAS  Google Scholar 

  107. R. Alkire and B. Place, Transient behaviour during reactant depletion in porous electrodes, J. Electrochem. Soc. 119, 1687 (1972).

    CAS  Google Scholar 

  108. J. H. Russell, Gemini fuel cell system, in Proceedings of the 19th Power Sources Conference, PSC Publications Committee, New Jersey (1965), pp. 35–38.

    Google Scholar 

  109. C. C. Morrill, Apollo fuel cell System, in Proceedings of the 19th Power Sources Conference, PSC Publications Committee, New Jersey (1965), pp. 38–41.

    Google Scholar 

  110. A. C. Ching, A. P. Gillis, and F. M. Plauche, Fuel cell powerplant operation in Apollo spacecraft, in Proceedings of the 7th Intersociety Energy Conversion Engineering Conference, 1972, paper No. 729064, pp. 368–372.

    Google Scholar 

  111. W. E. Rice and D. Bell, Status of Shuttle fuel cell technology program, in Proceedings of the 7th Intersociety Energy Conversion Engineering Conference, 1972, paper No. 729067, pp. 390–395.

    Google Scholar 

  112. L. E. Chapman, The solid polymer electrolyte fuel cell for the Space Shuttle orbiter, in Proceedings of the 7th Intersociety- Energy Conversion Engineering Conference, 1972, paper No. 729076, pp. 466–471.

    Google Scholar 

  113. J. F. McElroy, Solid polymer electrolyte (SPE) fuel cell technology program, Final Technical Report for NASA/JSC, October 1975.

    Google Scholar 

  114. W. A. Titterington and A. P. Fickett, Electrolytic hydrogen fuel production with a solid polymer electrolyte, in Proceedings of the 8th Intersociety Energy Conversion Engineering Conference, paper No. 739020, August 1973, pp. 574–579.

    Google Scholar 

  115. L. J. Nuttall and W. A. Titterington, General Electric’s solid polymer electrolyte water electrolysis, in Conference on the Electrolytic Production of Hydrogen, City University, London, February 1975).

    Google Scholar 

  116. M. F. Collins, Life test of a 200 W ammonia-air fuel cell system, in 25th Power Sources Symposium, PSC Publications Committee, New Jersey (1972), pp. 162–164.

    Google Scholar 

  117. M. F. Collins, R. Michalek, and W. Brink, Design parameters of a 300 watt ammonia-air fuel cell system, in Proceedings of the 7th Intersociety Energy Conversion Engineering Conference, 1972, paper No. 729006, pp. 32–36.

    Google Scholar 

  118. O.J. Adlhart, The phosphoric acid fuel cell—a long life power source for the low to medium wattage range, in Proceedings of the 7th Intersociety Energy Conversion Engineering Conference, 1972, paper No. 729163, pp. 1097–1101.

    Google Scholar 

  119. R. Noyes, ed., Fuel Cells for Public Utility and Industrial Power, Noyes Data Corporation, Park Ridge, New Jersey (1977).

    Google Scholar 

  120. G. Szego, Economics, logistics, and optimization of fuel cells, Institute for Defence Analysis Research Paper, 1965, p. 208.

    Google Scholar 

  121. United Technologies, Inc., Connecticut, Final Report for “On site fuel cell resource conservation in industrial process applications”, FCR 0439, October 3, 1977.

    Google Scholar 

  122. Power Systems Division, United Technology Corporation, National benefits associated with commercial application of fuel cell power plants, ERDA 76–54, UC-93, February 1976.

    Google Scholar 

  123. P. Bolan and L. M. Handley, First generation fuel cell powerplant characteristics, paper presented at Fuel Cell Workshop at Sarasota, Florida, November 14–17, 1977.

    Google Scholar 

  124. M. Eisenberg, Design and scale-up considerations for electrochemical fuel cells, Adv. Electrochem. Electrochem. Eng. 2, 235 (1966).

    Google Scholar 

  125. H. J. R. Maget, The ion exchange membrane fuel cell, Handbook of Fuel Cell Technology, C. Berger, ed., Prentice-Hall, Englewood Cliffs, New Jersey (1968).

    Google Scholar 

  126. B. S. Baker, D. Gidaspow, and D. Wasan, Thermal phenomena in fuel cells and batteries, Adv. Electrochem. Electrochem. Eng. 8, 63 (1971).

    CAS  Google Scholar 

  127. J. A. Cusumano and R. B. Levy (Catalytica Assoc, Inc.), Assessment of fuel processing alternatives for fuel cell power generation, EPRI Report EPRI EM-570 (Research Project 919–1) (October 1977).

    Google Scholar 

  128. C. J. Warde, R. J. Ruka, and A. O. Isenberg, Fuel cells, energy conversion alternatives study (ECAS), Westinghouse Phase I—Final Report, NASA CR-134941, Vol. XII, 1976.

    Google Scholar 

  129. A. P. Fickett, Electric Power Research Institute, in Alkaline Fuel Cell Discussions at the EPRI Catalyst Workshop, January 1975.

    Google Scholar 

  130. A. B. Hart and G. J. Womack, Fuel Cells, Chapman and Hall, London (1967).

    Google Scholar 

  131. T. L. Markin, Limiting problems in the development of a high temperature solid oxide electrolytic fuel cell, in Proceedings of the 18th International Symposium on Power Sources, Brighton, England, paper No. 3, pp. 31–42, September 1972.

    Google Scholar 

  132. Final Report, Project fuel cell, Research and Development Report No. 57, Office of Coal Research, Department of the Interior, Washington, 1971.

    Google Scholar 

  133. J. Verstraete, D. Lefevre, R. Lefort, and J. Henry, Fuel cell economics and commercial applications, in Handbook of Fuel Cell Technology, C. Berger, ed., Prentice-Hall, Englewood Cliffs, New Jersey (1968).

    Google Scholar 

  134. M. Warshay and R. K. Burns, Molten carbonate fuel cell/steam system, in Evolution of phase II conceptual design, implementation, and assessment resulting from the energy conversion alternatives study (ECAS), Section 4.6, NASA TMX-73515, April 1977.

    Google Scholar 

  135. J. M. King, Integrated coal gasifier/molten carbonate fuel celt powerplant conceptual design and implementation assessment, Energy conversion alternatives study (ECAS), United Technology Phase II Final Report, NASA CR-134955, FCR 0237 (1977).

    Google Scholar 

  136. S. Srinivasan, J. McBreen, and B. McCormick, Program plan for the development of fuel cell technology for vehicular application, September 15, 1977.

    Google Scholar 

  137. Proceedings of the Fuel Cell Powered Vehicle Workshop, B. McCormick, S. Depp, S. Srinivasan, J. McBreen, I. L. Harry, A. Voelker, C. Pax, D. Hamilton, W. Kerwin, and B. S. Baker, eds., Los Alamos Scientific Laboratory, Los Alamos, New Mexico, August 1978.

    Google Scholar 

  138. K. V. Kordesch, Carbon electrodes, in Proceedings of the Conference on Fuel Cell Catalysis Workshop, EPRI Special Report, SR-13, pp. 101–106, August 1975.

    Google Scholar 

  139. J. M. King, Jr., Advanced technology fuel cell program, EPRI EM-335 (Research Project 114–1), October 1976.

    Google Scholar 

  140. I. R. McNab, Power conversion in space, in Research Programme on Magnetoplasma-dynamic Power Generation, Tech. Summary Report, December 1, 1962 to March 31, 1964, Part 3: Theoretical (AD602383); Washington, D.C., Office of Technical Services, U.S. Department of Commerce, 1964.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Plenum Press, New York

About this chapter

Cite this chapter

Tilak, B.V., Yeo, R.S., Srinivasan, S. (1981). Electrochemical Energy Conversion—Principles. In: Bockris, J.O., Conway, B.E., Yeager, E., White, R.E. (eds) Comprehensive Treatise of Electrochemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6687-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6687-8_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-6689-2

  • Online ISBN: 978-1-4615-6687-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics