Advertisement

Matroids: Introduction

  • Martin Aigner
Part of the Grundlehren der mathematischen Wissenschaften book series (GL, volume 234)

Abstract

Matroids were introduced in the early 1930’s in an attempt to axiomatize and generalize basic notions in linear algebra such as dependence, basis and span. The importance of matroids came to be appreciated with the discovery of new classes of matroids so that today we may rightly consider them as a unifying concept for a large part of combinatorics opening up basic combinatorial questions to algebraic ideas and methods. One of these fields is graph theory; in fact, it was precisely this correspondence between concepts in linear algebra and concepts in graph theory which set the theory of matroids on its way. Since then, other branches of cornbinatorics such as transversal theory, incidence structures and combinatorial lattice theory have been brought successfully into the realm of matroid theory. Indeed, it is this exchange of ideas from various fields which is one of the most gratifying aspects of matroid theory and also one measure of its success.

Keywords

Bipartite Graph Rank Function Partial Transversal Incidence Geometry Geometric Lattice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. 7.
    Whitney, H.: On the abstract properties of linear dependence. Amer. J. Math. 57, 509–533 (1935).MathSciNetCrossRefGoogle Scholar
  2. 5.
    Birkhoff, G.: Abstract linear dependence in lattices. Amer. J. Math. 57, 800–804 (1935).MathSciNetCrossRefGoogle Scholar
  3. 1.
    Van der Waerden, B. L.: Algebra. 6th edition. Berlin, Göttingen, Heidelberg: Springer-Verlag (1964).Google Scholar
  4. See also Crapo-Rota, Désarméniens-Kung-Rota, Doubilet-Rota-Stanley, Goldman-Rota, Harper-Rota, Mullin-Rota, Roman-Rota. Rothschild, B. L. See Graham-Rothschild, Graham-Leeb-Rothschild. Rutherford, D. E.: Substitutional Analysis. Edinburgh: Oliver and Body (1948).Google Scholar
  5. 1.
    Rado, R.: A theorem on independence relations. Quart. J. Math. (Oxford) 13, 83–89 (1942).MathSciNetGoogle Scholar
  6. 2.
    Rado, R.: Axiomatic treatment of rank in infinite sets. Can. J. Math. 1, 337–343 (1949).MathSciNetzbMATHCrossRefGoogle Scholar
  7. 3.
    Rado, R.: Note on independence functions. Proc. London Math. Soc. 7, 300–320 (1957).MathSciNetzbMATHCrossRefGoogle Scholar
  8. 1.
    Dilworth, R. P.:The arithmetical theory of Birkhoff lattices. Duke Math. J. 8, 286–299 (1941).MathSciNetCrossRefGoogle Scholar
  9. 2.
    Dilworth, R. P.:Dependence relations in a semimodular lattice. Duke Math. J. 11, 575–587 (1944).MathSciNetzbMATHCrossRefGoogle Scholar
  10. 5.
    Dilworth, R. P.:The structure of relatively complemented lattices. Annals Math. 51, 348–359 (1950).MathSciNetzbMATHCrossRefGoogle Scholar
  11. 5.
    See also Erdös-Turan. Tutte, W. T.:A homotopy theorem for matroids, I and II. Trans. Amer. Math. Soc. 88, 144–174 (1958).Google Scholar
  12. 6.
    See also Erdös-Turan. Tutte, W. T.:Matroids and graphs. Trans. Amer. Math. Soc. 90, 527–552 (1959).Google Scholar
  13. 10.
    See also Erdös-Turan. Tutte, W. T.:Lectures on matroids. J. Res. Nat. Bur. Stand. 69B, 1–48 (1965).Google Scholar
  14. 7.
    Whitney, H.: On the abstract properties of linear dependence. Amer. J. Math. 57, 509–533 (1935).MathSciNetCrossRefGoogle Scholar
  15. 1.
    Pym, J. S.-Perfect, H.: Submodular functions and independence structures. J. Math. Anal. Appl. 30, 1–31 (1970).MathSciNetzbMATHCrossRefGoogle Scholar
  16. 2.
    Mirsky, L.-Perfect, H.: Applications of the notion of independence to combinatorial analysis. J. Comb. Theory 2, 327–357 (1967).Google Scholar
  17. 2.
    See also Nijenhuis-Wilf. Wille, R.: Verbandstheoretische Charakterisierung n-stufiger Geometrien. Arch. Math. 18, 465–468 (1967).Google Scholar
  18. 1.
    Dembowski, P.: Finite Geometries. Berlin-Heidelberg-New York: Springer-Verlag (1968).zbMATHGoogle Scholar
  19. 10.
    See also Erdös-Turan. Tutte, W. T.:Lectures on matroids. J. Res. Nat. Bur. Stand. 69B, 1–48 (1965).Google Scholar
  20. 2.
    Nash Williams, C. St. J. A.: An application of matroids to graph theory. Theory of Graphs. Internat. Symp. (Rome), 263–265. Paris: Dunond (1966).Google Scholar
  21. 1.
    Crapo, H. H.-Rota, G.-C.: On the Foundations of Combinatorial Theory II: Combinatorial Geometries. Cambridge Mass.: MIT Press (1970). ee also Blackburn-Crapo-Higgs.Google Scholar
  22. 2.
    Minty, G. J.: On the axiomatic foundations of the theories of directed linear graphs, electrical networks and network programming. Journ. Math. Mech. 15, 485–520 (1960).MathSciNetGoogle Scholar
  23. 1.
    Lehman, A.: A solution of the Shannon switching game. SIAM J. 12, 687–725 (1964).MathSciNetzbMATHGoogle Scholar
  24. 3.
    Higgs, D. A.: Matroids and duality. Colloq. XX, 215–220 (1969).Google Scholar
  25. 2.
    See also Erdös-Turan. Tutte, W. T.:A ring in graph theory. Proc. Camb. Phil. Soc. 43, 26–40 (1947).Google Scholar
  26. 3.
    See also Erdös-Turan. Tutte, W. T.:A contribution to the theory of chromatic polynomials. Can. J. Math. 6 80–91 (1954).Google Scholar
  27. 2.
    Brylawski, T. H.: A decomposition for combinatorial geometries. Transi Amer. Math. Soc. 171,235–282 (1972).MathSciNetzbMATHCrossRefGoogle Scholar
  28. 6.
    Crapo, H. H.: The Tutte polynomial. Aeguationes Math. 3, 211–229 (1969).MathSciNetzbMATHCrossRefGoogle Scholar
  29. 1.
    Dowling, T. A.-Wilson, R. M.: Whitney number inequalities for geometric lattices. Proc. Amer. Math. Soc. 47, 504–512 (1975). See also Aigner-Dowling.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1979

Authors and Affiliations

  • Martin Aigner
    • 1
  1. 1.II. Institut für MathematikFreie Universität BerlinBerlin 33Federal Republic of Germany

Personalised recommendations