Generating Functions

  • Martin Aigner
Part of the Grundlehren der mathematischen Wissenschaften book series (GL, volume 234)


In the course of our investigation of counting problems we have encountered many functions c = c(k) depending on an integral parameter k = 0, 1, 2,.... Most of the time the parameter had something to do with the type classification of the underlying incidence algebra. Our goal is now to find the solution c(0), c(1), c(2), a closed form instead of having to evaluate each term c(k) individually. To accomplish this we regard c(k) = c k as coefficient of a formal power series and develop methods to compute this series, called the generating function for the coefficients c k .


Boolean Function Rooted Tree Permutation Group Label Graph Counting Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andrews, G. E..: On the foundations of combinatorial theory V: Eulerian differential operators. Studies in Appl. Math. 50, 345–375 (1971).MathSciNetzbMATHGoogle Scholar
  2. 2.
    Andrews, G. E..: Partition identities, Advances Math. 9, 10–51 (1972).Google Scholar
  3. 1.
    Riordan, J.: An Introduction to Combinatorial Mathematics. New York, London, Sydney: John Wiley and Sons (1958).Google Scholar
  4. 2.
    Riordan, J.: Combinatorial Identities. New York, London, Sidney: John Wiley and Sons (1968).Google Scholar
  5. 2.
    Foata, D.: La Série Génératrice Exponentielle dans les Problèmes d’énumération. Montréal: Les Presses de l’Université de Montréal (1974).zbMATHGoogle Scholar
  6. 1.
    See also Doubilet-Rota-Stanley. Steffensen, J. F.: Interpolation. New York: Chelsea (1950).Google Scholar
  7. 1.
    See also Brooks-Smith-Stone-Tutte. Tverberg, H.: On Dilworth’s decomposition theorem for partially ordered sets. J. Comb. Theory 3, 305–306 (1967).Google Scholar
  8. 1.
    Scheid, H.: Einige Ringe zahlentheoretischer Funktionen. J. Reine Angew. Math. 237, 1–11 (1969).MathSciNetzbMATHGoogle Scholar
  9. 1.
    Bender, E. A.-Goldman, J. R.: Enumerative uses of generating functions. Indiana Univ. Math. J. 20, 753–765 (1971).MathSciNetzbMATHCrossRefGoogle Scholar
  10. 1.
    Harary, F.-Palmer, E. M.: Graphical Enumeration. Reading: Addison-Wesley (1973).Google Scholar
  11. 1.
    Littlewood, J. E. See Hardy-Littlewood-Polya. Lloyd, E. K.: Polya’s theorem in combinatorial analysis applied to enumerate multiplicative partitions. J. London Math. Soc. 43, 224–230 (1968).MathSciNetGoogle Scholar
  12. 3.
    Bruijn, N. G.: Polya’s theory of counting. Applied Combinatorial Mathematics (Beckenbach, ed.), 144–184. New York: Wiley (1964).Google Scholar
  13. 1.
    Bruijn, N. G.: Generalization of Polya’s fundamental theorem in enumeration combinatorial analysis. Indag. Math. 21, 59–69 (1959).Google Scholar
  14. 4.
    Bruijn, N. G.: Colour patterns which are invariant under a given permutation of the colours. J. Comb. Theory 2, 418–421 (1967).zbMATHCrossRefGoogle Scholar
  15. 1.
    Kerber, A.: Representations of Permutation Groups II. Lecture Notes Math. 495, Springer-Verlag (1975).Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1979

Authors and Affiliations

  • Martin Aigner
    • 1
  1. 1.II. Institut für MathematikFreie Universität BerlinBerlin 33Federal Republic of Germany

Personalised recommendations