Advertisement

Lattices

  • Martin Aigner
Part of the Grundlehren der mathematischen Wissenschaften book series (GL, volume 234)

Abstract

After having introduced in chapter I the main classes of mappings, let us now study in some depth the various types of lattices encountered there. It seems appropriate to proceed from the most special class of distributive lattices to the more general types, modular, semimodular, and geometric lattices, particularly in view of the fact that each of the three characterizations we shall derive for distributive lattices will lead directly to an important branch of combinatorial theory: matroids and combinatorial geometries to be discussed in chapters VI and VII, the inversion calculus (chapters III and IV), and transversal theory (chapter VIII).

Keywords

Distributive Lattice Rank Function Division Ring Modular Lattice Irreducible Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

  1. 1.
    Birkhoff, G.: Lattice Theory. 3rd edition. Providence: Amer. Math. Soc. Coll. Publ. vol. 25 (1967).Google Scholar
  2. 1.
    Dilworth, R. P.-Greene, C.: A counterexample to the generalization of Sperner’s theorem. J. Comb. Theory 10, 18–20 (1971). See also Crawley-Dilworth, Hall-Dilworth.: Dinolt, G. W. See Brualdi-Dinolt.Google Scholar
  3. 5.
    Birkhoff, G.: Abstract linear dependence in lattices. Amer. J. Math. 57, 800–804 (1935).MathSciNetCrossRefGoogle Scholar
  4. 1.
    Dilworth, R. P.:The arithmetical theory of Birkhoff lattices. Duke Math. J. 8, 286–299 (1941).MathSciNetCrossRefGoogle Scholar
  5. 2.
    Dilworth, R. P.:Dependence relations in a semimodular lattice. Duke Math. J. 11, 575–587 (1944).MathSciNetzbMATHCrossRefGoogle Scholar
  6. 7.
    Whitney, H.: On the abstract properties of linear dependence. Amer. J. Math. 57, 509–533 (1935).MathSciNetCrossRefGoogle Scholar
  7. 2.
    Maeda, F.: Lattice theoretic characterization of abstract geometries. J. Sci. Hiroshima Univ. 15 A, 87–96 (1951).Google Scholar
  8. 3.
    Maeda, F.: Perspectivity of points in matroid lattices. J. Sci. Hiroshima Univ. 28 A, 101–112 (1964).Google Scholar
  9. Crapo-Rota, Désarméniens-Kung-Rota, Doubilet-Rota-Stanley, Goldman-Rota, Harper-Rota, Mullin-Rota, Roman-Rota. Rothschild, B. L. See Graham-Rothschild, Graham-Leeb-Rothschild. Rutherford, D. E.: Substitutional Analysis. Edinburgh: Oliver and Body (1948).Google Scholar
  10. 10.
    See also Erdös-Turan. Tutte, W. T.:Lectures on matroids. J. Res. Nat. Bur. Stand. 69B, 1–48 (1965).Google Scholar
  11. 1.
    Fujiwara, S. See Sasaki-Fujiwara. Fulkerson, D. R.: Studies in Graph Theory (ed.). Studies in Math. vol. 11/12. Math. Ass. of America (1975).Google Scholar
  12. 1.
    Mac Lane, S.: Some interpretations of abstract linear dependence in terms of projective geometry. Amer. J. Math. 58, 236–240 (1936).MathSciNetCrossRefGoogle Scholar
  13. 3.
    Jewett, R. 1. See Hales-Jewett. Joni, S. A. See Garsia-Joni. Jónsson, B.: Lattice-theoretic approach to projective and affine geometry. The axiomatic method (HenkinSuppes-Tarski, eds.). Amsterdam: Studies in logic, 188–203 (1959).Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1979

Authors and Affiliations

  • Martin Aigner
    • 1
  1. 1.II. Institut für MathematikFreie Universität BerlinBerlin 33Federal Republic of Germany

Personalised recommendations