Skip to main content

Neural and Endocrine Control of Circadian Rhythmicity in Invertebrates

  • Chapter
Biological Rhythms

Abstract

The importance of the nervous and neuroendocrine systems in the control of daily rhythms in invertebrates did not escape the notice of early workers in the field. As early as 1911, Demoll suggested that color changes in arthropods were controlled by a periodic phenomenon in the nervous system. Kalmus, in 1938, concluded that the eyestalk neurosecretory system was the source of control of the crayfish activity rhythm, and Welsh (1941) proposed that “a regular variation in the activity of nervous inhibitory centers” was the major factor in the hormonal control of the rhythmic migration of retinal shielding pigments in the crayfish. In the past two decades, a large body of evidence has been obtained that firmly establishes the proposition, implicit in much of this early work, that it is the central nervous and neuroendocrine systems that are responsible for the generation and coordination of the circadian rhythmicity of many behavioral and physiological functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aréchiga, H. Circadian rhythm of sensory input in the crayfish. In F. O. Schmitt and F. G. Worden (Eds.), The Neurosciences: Third Study Program. Cambridge, Mass.: MIT Press, 1974, pp. 517–523.

    Google Scholar 

  • Aréchiga, H., and Fuentes, B. Correlative changes between retinal shielding pigments position and electro-retinogram in crayfish. The Physiologist, 1970, 13, 137.

    Google Scholar 

  • Aréchiga, H., and Mena, F. Circadian variations of hormonal content in the nervous system of the crayfish. Comparative Biochemistry and Physiology, 1975, 52A, 581–584.

    Google Scholar 

  • Aréchiga, H., and Wiersma, C. A. G. Circadian rhythm of responsiveness in crayfish visual units. Journal of Neurobiology, 1969, 1, 71–85.

    Article  Google Scholar 

  • Aréchiga, H., Funetes, B., and Barrera, B. Circadian rhythm of responsiveness in the visual system of the crayfish. In J. Salánki (Ed.), Neurobiology of Invertebrates. Budapest: Akadémiai Kiadó, 1973, pp. 403–427.

    Google Scholar 

  • Aréchiga, H., Huberman, A., and Naylor, E. Hormonal modulation of circadian neural activity in Carcinus maenus (L). Proceedings of the Royal Society of London B., 1974, 187, 299–313.

    Article  Google Scholar 

  • Barlow, R. B., Jr., Balanowski, S. J., Jr., and Brachman, M. L. Efferent optic nerve fibers mediate circadian rhythm in the Limulus eye. Science, 1977, 197, 86–89.

    Article  Google Scholar 

  • Barrera-Mera, B. The effect of cerebroid ganglion lesions on ERG circadian rhythm in the crayfish. Physiology and Behavior, 1976, 17, 59–64.

    Article  Google Scholar 

  • Bennitt, R. Diurnal rhythm in the proximal cells of the crayfish retina. Physiological Zoology, 1932, 5, 65–69.

    Google Scholar 

  • Bliss, D. E. Neuroendocrine control of locomotor activity in the land crab Gecarcinus lateralis. Memoirs of the Society of Endocrinology, 1962, 12, 391.

    Google Scholar 

  • Block, G. D. Evidence for an entrainable circadian oscillator in the abdominal ganglia of crayfish. Neuroscience Abstracts, 1976, 2, 315.

    Google Scholar 

  • Block, G. D., and Lickey, M. E. Extraocular photoreceptors and oscillators can control the circadian rhythm of behavioral activity in Aplysia. Journal of Comparative Physiology, 1973, 84, 367–374.

    Article  Google Scholar 

  • Block, G. D., and Page, T. L. Circadian pacemakers in the nervous system, Annual Review of Neuro science, 1978, 1, 19–34.

    Article  Google Scholar 

  • Block, G. D., Hudson, D. J., and Lickey, M. E. Extraocular photoreceptors can entrain the circadian oscillator in the eye of Aplysia. Journal of Comparative Physiology, 1974, 89, 237–250.

    Article  Google Scholar 

  • Brady, J. Control of circadian rhythm of activity in the cockroach. II. The role of the subesophageal ganglion and ventral nerve cord. Journal of Experimental Biology, 1967, 47, 165–178.

    Google Scholar 

  • Brady, J. The search for the insect clock. In M. Menaker (Ed.), Biochronometry. Washington, D.C.: National Academy of Sciences, 1971, pp. 517–524.

    Google Scholar 

  • Brady, J. The physiology of insect circadian rhythms. Advances in Insect Physiology, 1974, 10, 1–115.

    Article  Google Scholar 

  • Corrent, G., McAdoo, D. J., and Eskin, A. Serotonin phase shifts the circadian rhythm from the Aplysia eye. Science, 1978, 202, 977–979.

    Article  Google Scholar 

  • Cymborowski, B. Control of the circadian rhythm of locomotor activity in the house cricket. Journal of Insect Physiology, 1973, 19, 1423–1440.

    Article  Google Scholar 

  • Cymborowski, B., and Brady, J. Insect circadian rhythms transmitted by parabiosis—A reexamination. Nature (London), 1972, 236, 221–222.

    Article  Google Scholar 

  • Demoll, R. M. Über die Wanderung des Iris pigments in Facettenauge. Zoologische Jahrbücher Abteilung für Allegemeine Zoologie und Physiologie der Tiere, 1911, 30, 159–180.

    Google Scholar 

  • Driskill, R. J. The circadian locomotor rhythm of the cockroach: An examination of the photoreceptive system operative in entrainment. Master’s thesis, University of Delaware, 1974.

    Google Scholar 

  • Dumortier, B. Photoreception in the circadian rhythm of stridulatory activity in Ephippiger (Ins., Orthoptera): Likely existence of two photoreceptive systems. Journal of Comparative Physiology, 1972, 77, 80–112.

    Article  Google Scholar 

  • Engelmann, W., and Honegger, H. W. Tagesperiodische Schlüpfrhythmik einer augenlosen Drosophila mel-anogaster-mutante. Zeitschrift für Naturforschung, 1966, B: 22, 1–2.

    Google Scholar 

  • Eskin, A. Properties of the Aplysia visual system: In vitro entrainment of the circadian rhythm and centrifugal regulation of the eye. Zeitschrift für Vergleichende Physiologie, 1971, 74, 353–371.

    Article  Google Scholar 

  • Eskin, A. Phase shifting a circadian rhythm in the eye of Aplysia by high potassium pulses. Journal of Comparative Physiology, 1972, 80, 353–376.

    Article  Google Scholar 

  • Eskin, A. Entraining a circadian rhythm from the isolated eye of Aplysia: The involvement of changes in membrane potential. Neuroscience Abstracts, 1977a, 3, 176.

    Google Scholar 

  • Eskin, A. Neurophysiological mechanisms involved in photo-entrainment of the circadian rhythm from the Aplysia eye. Journal of Neurobiology, 1977b, 8, 273–299.

    Article  Google Scholar 

  • Eskin, A., and Harcombe, E. Eye of Navanax: Optic activity, circadian rhythm and morphology. Comparative Biochemistry and Physiology, 1977, 57A, 443–449.

    Google Scholar 

  • Fleissner, G. Circadiane Adaptation und Schirmpigment—Verlagerung in den Sehzellen der Medianaugen von Androctonus australis L. (Buthidae, Scorpiones). Journal of Comparative Physiology, 1974, 91, 399–416.

    Article  Google Scholar 

  • Fleissner, G. Entrainment of the scorpion’s circadian rhythm via the median eyes. Journal of Comparative Physiology, 1977a, 118, 93–99.

    Article  Google Scholar 

  • Fleissner, G. Scorpion lateral eyes: Extremely sensitive receptors of Zeitgeber stimuli. Journal of Comparative Physiology, 1977b, 118, 101–108.

    Article  Google Scholar 

  • Gordon, W. H., Larimer, J. L., and Page, T. L. Circumesophageal interneurons required for reflexive and circadian locomotor behaviors in crayfish. Journal of Comparative Physiology, 1977, 116, 227–238.

    Article  Google Scholar 

  • Harker, J. E. Diurnal rhythms in Periplaneta americana L. Nature (London) 1954, 173, 689–690.

    Article  Google Scholar 

  • Harker, J. E. Factors controlling the diurnal rhythm of activity in Periplaneta americana. Journal of Experimental Biology, 1956, 33, 224–234.

    Google Scholar 

  • Harker, J. E. Internal factors controlling the subesophageal ganglion neurosecretory cycle in Periplaneta americana. Journal of Experimental Biology, 1960, 37, 164–170.

    Google Scholar 

  • Hudson, D., and Lickey, M. Weak negative coupling between the circadian pacemakers of the eyes of Aplysia. Neuroscience Abstracts, 1977, 3, 179.

    Google Scholar 

  • Jacklet, J. W. Circadian rhythm of optic nerve impulses recorded in darkness from isolated eye of Aplysia. Science, 1969a, 164, 562–563.

    Article  Google Scholar 

  • Jacklet, J. W. Electrophysiological organization of the eye of Aplysia. Journal of General Physiology, 1969b, 53, 21–42.

    Article  Google Scholar 

  • Jacklet, J. W. A circadian rhythm in the optic nerve impulses from an isolated eye in darkness. In M. Menaker (Ed.), Biochronometry. Washington, D.C.: National Academy of Sciences, 1971, pp. 351–362.

    Google Scholar 

  • Jacklet, J. W. The effects of constant light and light pulses on the circadian rhythm in the eye of Aplysia. Journal of Comparative Physiology, 1974, 90, 33–45.

    Article  Google Scholar 

  • Jacklet, J. W., and Geronimo, J. Circadian rhythm: Population of interacting neurons. Science, 1971, 174, 299–302.

    Article  Google Scholar 

  • Jacklet, J. W., Alvarez, R., and Bernstein, B. Ultrastructure of the eye of Aplysia. Journal of Ultrastructural Research, 1972, 38, 246–261.

    Article  Google Scholar 

  • Jahn, T. L., and Crescitelli, J. Diurnal changes in the electrical responses of the compound eye. Biological Bulletin, 1940, 78, 45–52.

    Article  Google Scholar 

  • Jahn, T. L., and Wulff, V. J. Electrical aspects of a diurnal rhythm in the eye of Dytiscus fasciventris. Physiological Zoology, 1943, 16, 101–109.

    Google Scholar 

  • Kalmus, H. Das Aktogram des Flusskrebs und seine Beeinflussung durch Organextrakte. Zeitschrift für Vergleichende Physiologie, 1938, 25, 689–802.

    Google Scholar 

  • Koehler, W. K., and Fleissner, G. Internal desynchronization of bilaterally organized circadian oscillators in the visual system of insects. Nature (London), 1978, 274, 708–710.

    Article  Google Scholar 

  • Kupfermann, I. A circadian locomotor rhythm in Aplysia californica. Physiology and Behavior, 1968, 3, 179–182.

    Article  Google Scholar 

  • Lickey, M. E., Block, G. D., Hudson, D. J., and Smith, J. T. Circadian oscillators and photoreceptors in the gastropod, Aplysia. Photochemistry and Photobiology, 1976, 23, 253–273.

    Article  Google Scholar 

  • Lickey, M., Wozniak, J., Block, G., Hudson, D., and Augter, G. The consequences of eye removal for the circadian rhythm of behavioral activity in Aplysia. Journal of Comparative Physiology, 1977, 118, 121–143.

    Article  Google Scholar 

  • Loher, W. Circadian control of stridulation in the cricket, Teleogryllus commodus Walker. Journal of Comparative Physiology, 1972, 79, 173–190.

    Article  Google Scholar 

  • Loher, W. Circadian control of spermatophore formation in the cricket Teleogryllus commodus Walker. Journal of Insect Physiology, 1974, 20, 1155–1172.

    Article  Google Scholar 

  • Loher, W., and Chandrashekaran, M. K. Circadian rhythmicity in the oviposition of the grasshopper Chor-thippus curtipennis. Journal of Insect Physiology, 1970, 16, 1677–1688.

    Article  Google Scholar 

  • Luborsky-Moore, J. L., and Jacklet, J. W. Ultrastructure of the secondary cells in the Aplysia eye. Journal of Ultrastructural Research, 1977, 60, 235–245.

    Article  Google Scholar 

  • Naylor, E., and Williams, B. G. Effects of eyestalk removal of rhythmic locomotor activity in Carcinus. Journal of Experimental Biology, 1968, 49, 107–116.

    Google Scholar 

  • Naylor, E., Smith, G., and Williams, B. The role of the eyestalk in the tidal activity rhythm of the shore crab, Carcinus maenas (L.). In J. Salanki (Ed.), Neurobiology of Invertebrates. Budapest: Publishing House of the Hungarian Academy of Sciences, 1973, pp. 423–429.

    Google Scholar 

  • Nishiitsutsuji-Uwo, J., and Pittendrigh, C. S. Central nervous system control of circadian rhythmicity in the cockroach. II. The pathway of light signals that entrain the rhythms. Zeitschrift für vergleichende Physiologie, 1968a, 58, 1–13.

    Article  Google Scholar 

  • Nishiitsutsuji-Uwo, J., and Pittendrigh, C. S. Central nervous system control of circadian rhythmicity in the cockroach. III. The optic lobes, locus of the driving oscillation? Zeitschrift für vergleichende Physiologie, 1968b, 58, 14–46.

    Article  Google Scholar 

  • Nishiitsutsuji-Uwo, J., Petropulos, S. F., and Pittendrigh, C. S. Central nervous system control of circadian rhythmicity in the cockroach. I. Role of the pars intercerebralis. Biological Bulletin Woods Hole, 1967, 133, 679–696.

    Article  Google Scholar 

  • Page, T. L. Interactions between bilaterally paired components of the cockroach circadian system. Journal of Comparative Physiology, 1978, 124, 225–236.

    Article  Google Scholar 

  • Page, T. L., and Larimer, J. L. Entrainment of the circadian locomotor activity rhythm in crayfish. Journal of Comparative Physiology, 1972, 78, 107–120.

    Article  Google Scholar 

  • Page, T. L., and Larimer, J. L. Neural control of circadian rhythmicity in the crayfish. I. The locomotor activity rhythm. Journal of Comparative Physiology, 1975a, 97, 59–80.

    Article  Google Scholar 

  • Page, T. L., and Larimer, J. L. Neural control of circadian rhythmicity in the crayfish. II. The ERG amplitude rhythm. Journal of Comparative Physiology, 1975b, 97, 81–96.

    Article  Google Scholar 

  • Page, T. L., and Larimer, J. L. Extraretinal photoreception in entrainment of crustacean rhythms. Photochemistry and Photobiology, 1976, 23, 245–251.

    Article  Google Scholar 

  • Page T. L., Caldarola, P. C., and Pittendrigh, C. S. Mutual entrainment of bilaterally distributed circadian pacemakers. Proceedings of the National Academy of Sciences, USA, 1977, 74, 1277–1281.

    Article  Google Scholar 

  • Pittendrigh, C. S. Circadian rhythms and the circadian organization of living systems. Cold Spring Harbor Symposium on Quantitative Biology, 1960, 25, 159–182.

    Article  Google Scholar 

  • Rao, K. P., and Gropalakrishnareddy, T. Blood borne factors in circadian rhythms of activity. Nature (London), 1967, 213, 1047–1048.

    Article  Google Scholar 

  • Rence, B., and Loher, W. Arrhythmically singing crickets: Thermoperiodic reentrainment after bilobectomy. Science, 1975, 190, 385–387.

    Article  Google Scholar 

  • Roberts, S. K. Photoreception and entrainment of cockroach activity rhythms. Science, 1965, 148, 958–959.

    Article  Google Scholar 

  • Roberts, S. K. Circadian activity rhythms in cockroaches. III. The role of endocrine and neural factors. Journal of Cellular and Comparative Physiology, 1966, 67, 473–486.

    Article  Google Scholar 

  • Roberts, S. K. Circadian rhythms in cockroaches: Effects of optic lobe lesions. Journal of Comparative Physiology, 1974, 88, 21–30.

    Article  Google Scholar 

  • Roberts, S. K., Skopik, S. D., and Driskill, R. J. Circadian rhythms in cockroaches: does brain hormone mediate the locomotor cycle? In M. Menaker (Ed.), Biochronometry. Washington, D.C.: National Academy of Sciences, 1971, pp. 505–515.

    Google Scholar 

  • Roberts, T. W. Light, eyestalk chemical and certain other factors as regulators of the community activity for the crayfish, Cambarus virilis Hagen. Ecological Monographs, 1944, 14, 361–385.

    Article  Google Scholar 

  • Sanchez, J. A., and Fuentes-Pardo, B. Circadian rhythm in the amplitude of the electroretinogram in the isolated eyestalk of the crayfish. Comparative Biochemistry and Physiology, 1977, 56A, 601–605.

    Google Scholar 

  • Schalleck, W. Some mechanisms controlling locomotor activity in the crayfish. Journal of Experimental Zoology, 1942, 91, 155–166.

    Article  Google Scholar 

  • Sokolove, P. G. Localization of the cockroach optic lobe circadian pacemaker with microlesions. Brain Research, 1975a, 87, 13–21.

    Article  Google Scholar 

  • Sokolove, P. G. Locomotory and stridulatory circadian rhythms in the cricket, Teleogryllus commodus. Journal of Insect Physiology, 1975b, 21, 537–538.

    Article  Google Scholar 

  • Sokolove, P. G., and Loher, W. Role of eyes, optic lobes, and pars intercerebralis in locomotory and stridulatory circadian rhythms of Teleogryllus commodus. Journal of Insect Physiology, 1975, 21, 785–799.

    Article  Google Scholar 

  • Strumwasser, F. Neurophysiological aspects of rhythms. In G. C. Quarton, T. Melnechuk, R. O. Schmitt (Eds.), The Neuro sciences, A Study Program. New York: Rockefeller University Press, 1967, pp. 516–528.

    Google Scholar 

  • Strumwasser, F. Neuronal principles organizing periodic behaviors. In F. O. Schmitt and F. G. Worden (Eds.), The Neurosciences: Third Study Program. Cambridge, Mass.: MIT Press, 1974, pp. 459–478.

    Google Scholar 

  • Truman, J. W. Circadian rhythms and physiology with special reference to neuroendocrine processes in insects. In Proceedings of the International Symposium on Circadian Rhythmicity. Wageningen, Netherlands: Pudoc Press, 1971a, pp. 111–135.

    Google Scholar 

  • Truman, J. W. Hour glass behavior of the circadian clock controlling eclosion of the silkmoth, Antherea pernyi. Proceedings of the National Academy of Sciences, USA, 1971b, 68, 595–599.

    Article  Google Scholar 

  • Truman, J. W. Physiology of insect ecdysis. I. The eclosion behavior of silkmoths and its hormonal control. Journal of Experimental Biology, 1971c, 54, 805–814.

    Google Scholar 

  • Truman, J. W. Physiology of insect rhythms. II. The silk moth brain as the location of the biological clock controlling eclosion. Journal of Comparative Physiology, 1972, 81, 99–114.

    Article  Google Scholar 

  • Truman, J. W. Physiology of insect ecdysis. II. The assay and occurrence of the eclosion hormone in the Chinese oak silkmoth, Antheraea pernyi. Biological Bulletin, 1973, 114, 200–211.

    Article  Google Scholar 

  • Truman, J. W. Circadian release of a prepatterned neural program in silkmoths. In F. O. Schmitt and F. G. Worden (Eds.), The Neurosciences: Third Study Program. Cambridge, Mass.: MIT Press, 1974a, pp. 525–529.

    Google Scholar 

  • Truman, J. W. Physiology of insect rhythms. IV. Role of the brain in the regulation of the flight rhythm of the giant silkmoths. Journal of Comparative Physiology, 1974b, 95, 281–296.

    Article  Google Scholar 

  • Truman, J. W. Extraretinal photoreception in insects. Photochemistry and Photo bio logy, 1976, 23, 215–225.

    Article  Google Scholar 

  • Truman, J. W., and Riddiford, L. M. Neuroendocrine control of ecdysis in silkmoths. Science, 1970, 167, 1624–1626.

    Article  Google Scholar 

  • Truman, J. W., and Sokolove, P. J. Silkmoth eclosion: Hormonal triggering of a centrally programmed pattern of behavior. Science, 1972, 175, 1491–1493.

    Article  Google Scholar 

  • Welsh, J. H. The sinus glands and twenty-four hour cycles of retinal pigment migration in the crayfish. Journal of Experimental Zoology, 1941, 86, 35–49.

    Article  Google Scholar 

  • Zimmerman, W. F., and Ives, D. Some photophysiological aspects of circadian rhythmicity in Drosophila. In M. Menaker (Ed.), Biochronometry. Washington, D.G.: National Academy of Science, 1971.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Plenum Press, New York

About this chapter

Cite this chapter

Page, T.L. (1981). Neural and Endocrine Control of Circadian Rhythmicity in Invertebrates. In: Aschoff, J. (eds) Biological Rhythms. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6552-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6552-9_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-6554-3

  • Online ISBN: 978-1-4615-6552-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics