Skip to main content

Adaptive Daily Strategies in Behavior

  • Chapter
Biological Rhythms

Abstract

For most animals, the environment is a complex of variables fluctuating with a distinct 24-hr periodicity. There are abiotic fluctuations as a direct consequence of the earth’s rotation on its axis and of the periodic exposure of its surface to irradiation from the sun. Foremost among the physical factors with a distinct 24-hr pattern are light and temperature and, in addition, water vapor pressure and wind in the terrestrial milieu, oxygen pressure and turbulence in the aquatic milieu. Secondarily, there are biotic variations, due to organisms on other trophic levels, such as food species, predators, and parasites, or on the same trophic level: competitors and reproductive mates. By the creation of such daily patterns, the earth’s rotation has profoundly affected the ecological complexity of animal communities. Only a few environments, such as deep caves and ocean abysses, are fairly constant throughout the day. Some are only temporarily constant, at least in some variables (e.g., when covered by insulating snow and ice), or are polar habitats at the summer and winter solstices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adler, H. E. Sensory factors in migration. Animal Behaviour, 1964, 11, 566–577.

    Article  Google Scholar 

  • Aschoff, J. Tagesperiodik bei Mäusestämmen unter konstanten Umgebungsbedingungen. Pflügers Archiv, 1955, 262, 51–59.

    Article  Google Scholar 

  • Aschoff, J. Spontane lokomotorische Aktivität. Handbuch der Zoologie, 1962, 8, 1–76.

    Google Scholar 

  • Ashmole, N. P. The biology of the wideawake or sooty tern on Ascension Island. The Ibis, 1963, 103b, 297–364.

    Article  Google Scholar 

  • Beier, W., and Lindauer, M. Der Sonnenstand als Zeitgeber für die Biene. Apidologie, 1970, 1, 5–28.

    Article  Google Scholar 

  • Beling, I. Über das Zeitgedächtnis der Bienen Zeitschrift für vergleichende Physiologie, 1923, 9, 259–338.

    Article  Google Scholar 

  • Beling, I. von Stein-. Über das Zeitgedächtnis bei Tieren. Biological Reviews, 1935, 10, 18–41.

    Article  Google Scholar 

  • Bolles, R. C., and Stokes, L. W. The rat’s anticipation of diurnal and adiurnal feeding. Journal of Comparative Physiology and Psychology, 1965, 60, 290–294.

    Article  Google Scholar 

  • Bovet, J. On the social behavior in a stable group of long-tailed field mice (Apodemus sylvaticus). II. Its relations with distribution of daily activity. Behaviour, 1972, 41, 55–67.

    Article  Google Scholar 

  • Briedermann, L. Ermittlungen zur Aktivitätsperiodik des mitteleuropäischen Wildschweines (Sus s. scrofa L.). Zoologische Garten (Leipzig), 1971, 40, 302–327.

    Google Scholar 

  • Broekhuizen, S., and Maaskamp, F. Behaviour of does and leverets of the European hare (Lepus europaeus) whilst nursing. Journal of Zoology (London), 1980, 191, 487–501.

    Article  Google Scholar 

  • Collopy, M. W. Food caching by female American kestrels in winter. The Condor, 1977, 79, 63–68.

    Article  Google Scholar 

  • Corbet, P. S. Discussion contribution. In A. Chovnick (Ed.), Biological ClocksCold Spring Harbor Symposia on Quantitative Biology, 1960, 25, 354.

    Google Scholar 

  • Cott, H. B. Adaptive Coloration in Animals. London: Methuen, 1940.

    Google Scholar 

  • Crowcroft, P. The daily cycle of activity in British shrews. Proceedings of the Zoological Society of London, 1954, 123, 713–729.

    Google Scholar 

  • Daan, S., and Tinbergen, J. M. Young guillemots (Uria lomvia) leaving their Arctic breeding cliffs: A daily rhythm in numbers and risk. Ardea, 1980, 67, 96–100.

    Google Scholar 

  • Daan, S., and Slopsema, S. Short-term rhythms in foraging behaviour of the common vole, Microtus arvalis. Journal of Comparative Physiology, 1978, 127, 215–227.

    Article  Google Scholar 

  • Davis, R. E., and Bardach, J. E. Time-coordinated pre-feeding activity in a fish. Animal Behaviour, 1965, 13, 154–162.

    Article  Google Scholar 

  • Dorka, V. Das jahres- and tageszeitliche Zugmuster von Kurz- und Langstreckenziehern nach Beobachtungen auf den Alpenpässen Cou/Bretolet (Wallis). Der Ornithologische Beobachter, 1966, 63, 165–223.

    Google Scholar 

  • Elliott, J. M. Diel changes in invertebrate drift and the food of trout Salmo trutta L. Journal of Fish Biology, 1970, 2, 161–165.

    Article  Google Scholar 

  • Enright, J. T. Ecological aspects of endogenous rhythmicity. Annual Reviews of Ecology and Systematics, 1970, 1, 221–238.

    Article  Google Scholar 

  • Enright, J. T. The circadian tape recorder and its entrainment. In F. J. Vernberg (Ed.), Physiological Adaptation to the Environment. New York: Intext, 1975.

    Google Scholar 

  • Enright, J. T. Diurnal vertical migration: Adaptive significance and timing. I. Selective advantage: A metabolic model. Limnology and Oceanography, 1977, 22, 856–872.

    Article  Google Scholar 

  • Enright, J. T., and Hamner, W. M. Vertical diurnal migration and endogenous rhythmicity. Science, 1967, 157, 937–941.

    Article  Google Scholar 

  • Enright, J. T., and Honegger, H. W. Diurnal vertical migration: Adaptive significance and timing. II. Test of the model: Details of timing. Limnology and Oceanography, 1977, 22, 973–886.

    Google Scholar 

  • Eriksson, L. O. Spring inversion of the diel rhythm of locomotor activity in young sea-going brown trout, Salmo trutta trutta L., and atlantic salmon, Salmo salar L. Aquilo, Series Zoologica, 1973, 14, 68–79.

    Google Scholar 

  • Erkinaro, E. Der Phasenwechsel der lokomotorischen Aktivität bei Microtus agrestis (L.), M. arvalis (Pall.) and M. oeconomus (Pall.). Aquilo, Series Zoologica, 1969, 8, 1–31.

    Google Scholar 

  • Frisch, K. von. Die Tänze und das Zeitgedächtnis der Bienen in Widerspruch. Die Naturwissenschaften, 1940, 28, 5–69.

    Article  Google Scholar 

  • Fujimoto, K. [Diurnal activity of mice in relation to social order.] [Physiology and Ecology], Kyoto, 1953, 5, 97–103.

    Google Scholar 

  • Gee, J. H. Effect of daily synchronization of sexual activity on mating success in laboratory populations of two species of Dacus (Diptera: Tephritidae). Australian Journal of Zoology, 1969, 17, 619–624.

    Article  Google Scholar 

  • Gwinner, E. Beobachtungen über Nestbau und Brutpflege des Kolkraben (Corvus corax) in Gefangenschaft. Journal für Ornithologie, 1965, 106, 146–178.

    Google Scholar 

  • Gwinner, E. Circadian and circannual rhythms in birds. In J. A. King and D. S. Farner (Eds.), Avian Biology. Vol. 5. New York: Academic Press, 1975.

    Google Scholar 

  • Haddow, A. J., Yarrow, I. H. H., Lancaster, G. A., and Corbet, P. S. Nocturnal flight cycle in the males of African doryline ants (Hymenoptera: Formicidae). Proceedings of the Royal Entomological Society, London (A), 1966, 41, 103–106.

    Article  Google Scholar 

  • Hamilton, W. J., and Gilbert, W. M. Starling dispersal from a winter roost. Ecology, 1969, 50, 886–898.

    Article  Google Scholar 

  • Hansson, L. Small rodent food, feeding and population dynamics. Oikos, 1971, 22, 183–198.

    Article  Google Scholar 

  • Hediger, H. Bemerkungen zum Raum-Zeit-System der Tiere. Schweizerische Zeitschrift für Psychologie, 1946, 5, 241–269.

    Google Scholar 

  • Heimbach, F. Sympatric species, Clunio marinus Hal. and Cl. balticus n.sp. (Dipt., Chironomidae), isolated by differences in diel emergence time. Oecologia, 1978, 32, 195–202.

    Article  Google Scholar 

  • Holloway, F. A., and Wansley, R. A. Multiple retention deficits at periodic intervals after active and passive avoidance learning. Behavioral Biology, 1973, 9, 1–14.

    Article  Google Scholar 

  • Hörnicke, H., and Batsch, F. Coecotrophy in rabbits—A circadian function. Journal of Mammalogy, 1977, 58, 240.

    Article  Google Scholar 

  • Hughes, B. O. A circadian rhythm of calcium intake in the domestic fowl. British Poultry Science, 1972, 13, 485–493.

    Article  Google Scholar 

  • Hulscher, J. B. Localization of cockles (Cardium edule L.) by the oystercatcher (Haematopus ostralegus L.) in darkness and daylight. Ardea, 1976, 64, 292–310.

    Google Scholar 

  • Jolly, A. Hour of birth in primates and man. Folia Primato logica, 1972, 18, 108–121.

    Article  Google Scholar 

  • Kacelnik, A. The foraging efficiency of great tits (Parus major L.) in relation to light intensity. Animal Behaviour, 1979, 27, 237–241.

    Article  Google Scholar 

  • Kamran, N. A. Life history and behavior of Polydesma umbricola in Hawaii. Annals of the Entomological Society of America, 1968, 61, 795–802.

    Google Scholar 

  • Kayser, C., and Heusner, A. A. Le rhythme nycthéméral de la dépense d’énergie. Journal de Physiologie, 1967, 59, 3–116.

    Google Scholar 

  • Kennedy, C. H. Evolutionary level in relation to geographic, seasonal and diurnal distribution in insects. Ecology, 1928, 9, 367–379.

    Article  Google Scholar 

  • Kleber, E. Hat das Zeitgedächtnis der Bienen biologische Bedeutung? Zeitschrift für vergleichende Physiologie, 1935, 22, 221–262.

    Article  Google Scholar 

  • Koltermann, R. 24-Std-Periodik in der Langzeiterinnerrung an Duft- und Farbsignalen bei der Honigbiene. Zeitschrift für vergleichende Physiologie, 1971, 75, 49–68.

    Article  Google Scholar 

  • Kureck, A. Two circadian eclosion times in Chironomus thummi (Diptera), alternately selected with different temperatures. Oecologia, 1979, 40, 311–323.

    Article  Google Scholar 

  • Lewis, T., and Taylor, L. R. Diurnal periodicity of flight by insects. Transactions of the Royal Entomological Society, London, 1964, 116, 293–476.

    Google Scholar 

  • Lloyd, M., and Dybas, H. S. The periodical circada problem. I, II. Evolution, 1966, 20, 133–149, 466–505.

    Article  Google Scholar 

  • McMillan, J. P., Gauthreaux, S. A., and Helms, C. W. Spring migratory restlessness in caged birds: A arcadian rhythm. BioScience, 1970, 20, 1259–1260.

    Article  Google Scholar 

  • McNab, B. K. The evolution of endothermy in the phylogeny of mammals. The American Naturalist, 1978, 112, 1–21.

    Article  Google Scholar 

  • Meddis, R. On the function of sleep. Animal Behaviour, 1975, 23, 676–691.

    Article  Google Scholar 

  • Morgan, N. L. The biology of Leptocerus aterrinus Steph. with reference to its availability as food for trout. Journal of Animal Ecology, 1956, 25, 349–365.

    Article  Google Scholar 

  • Nyholm, E. S. Zur Ökologie von Myotis mystacinus (Leisl.) und M. daubentoni (Leisl.) (Chiroptera). Annales Zoologici Fennici, 1965, 2, 77–123.

    Google Scholar 

  • Orians, G. H., and Horn, H. Overlap in foods and foraging of four species of blackbirds in the potholes of central Washington. Ecology, 1969, 50, 930–938.

    Article  Google Scholar 

  • Park, O. Nocturnalism: The development of a problem. Ecological Monographs, 1940, 10, 485.

    Article  Google Scholar 

  • Pearson, D. L. Vertical stratification of birds in a tropical dry forest. The Condor, 1971, 73, 46–55.

    Article  Google Scholar 

  • Porter, W. P., Mitchell, J. W., Beckman, W. A., and DeWitt, C. B. Behavioral implications of mechanistic ecology: Thermal and behavioral modeling of desert ectotherms in their microenvironment. Oecologia, 1973, 13, 1–54.

    Article  Google Scholar 

  • Remmert, H. Der Schlüpfrhythmus der Insekten. Wiesbaden: Steiner, 1962.

    Google Scholar 

  • Renner, M. The contribution of the honey bee to the study of time sense and astronomical orientation. Cold Spring Harbor Symposia of Quantitative Biology, 1960, 25, 361–367.

    Article  Google Scholar 

  • Richter, C. P. A behavioristic study of the activity of the rat. Comparative Psychology Monographs, 1922, 1, 1–55.

    Google Scholar 

  • Rijnsdorp, A., Daan, S., and Dijkstra, C. Hunting in the kestrel, Falco tinnunculus, and the adaptive significance of daily habits. Oecologia, 1981, in press.

    Google Scholar 

  • Rongstad, O. J., and Tester, J. R. Behavior and maternal relations of young snowshoe hares. Journal of Wildlife Management, 1971, 35, 338–346.

    Article  Google Scholar 

  • Rovee, C. K., Kaufman, L. W., Collier, G. H., and Kent, G. G. Periodicity of death feigning by domestic fowl in response to simulated predation. Physiology and Behaviour, 1976, 17, 891–895.

    Article  Google Scholar 

  • Schoener, T. W. Nonsynchronous spatial overlap of lizards in patchy habitats. Ecology, 1970, 51, 408–418.

    Article  Google Scholar 

  • Schoener, T. W. Resource partitioning in ecological communities. Science, 1974, 185, 27–58.

    Article  Google Scholar 

  • Stein, H. Untersuchungen über den Zeitsinn bei Vögelin. Zeitschrift für vergleichende Physiologie, 1951, 33, 387–403.

    Google Scholar 

  • Steinborn, W. Beobachtungen zum Verhalten des Alpensteinbocks, Capra ibex ibex Linné, 1758. Säugetier-kundliche Mitteilungen, 1973, 21, 37–65.

    Google Scholar 

  • Tamisier, A. Rhythmes nycthéméraux des sarcelles d’hiver pendant leur hivernage en Camargue. Alauda, 1972, 40, 109–135, 235–256.

    Google Scholar 

  • Toates, F. M. A circadian rhythm of hoarding in the hamster. Animal Behaviour, 1978, 26, 631.

    Article  Google Scholar 

  • Wahl, O. Neue Untersuchungen über das Zeitgedächtnis der Bienen. Zeitschrift für vergleichende Physiologie, 1932, 16, 529–589.

    Google Scholar 

  • Walls, G. L. The vertebrate eye and its adaptive radiation. Cranbrook Institute of Science Bulletin, 1942, 19.

    Book  Google Scholar 

  • Ward, P., and Zahavi, A. The importance of certain assemblages of birds as information centres for food finding. The Ibis, 1973, 115, 517–534.

    Article  Google Scholar 

  • Wilson, E. O., and Bossert, W. H. Chemical communication among animals. Recent Progress in Hormone Research, 1963, 19, 673–716.

    Google Scholar 

  • Young, A. M. Community ecology of some tropical rain forest butterflies. The American Midland Naturalist, 1972, 87, 146–157.

    Article  Google Scholar 

  • Zeigler, H. P., Green, H. L., and Lehrer, R. Patterns of feeding behavior in the pigeon. Journal of Comparative and Physiological Psychology, 1971, 76, 468–477.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Plenum Press, New York

About this chapter

Cite this chapter

Daan, S. (1981). Adaptive Daily Strategies in Behavior. In: Aschoff, J. (eds) Biological Rhythms. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6552-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6552-9_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-6554-3

  • Online ISBN: 978-1-4615-6552-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics