Skip to main content

Construction

  • Chapter

Abstract

Composite materials are used by the construction industry to replace or complement conventional materials such as steel and concrete. The main reasons for the use of composite materials are corrosion resistance, electromagnetic transparency and weight savings. Frequently, structural engineers take advantage of more than one salient feature of composites to formulate a design that is competitive with an alternate design based on conventional materials.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, R.C. and Bogner, B.R. 1993. Long-term use of isopolyesters in corrosion resistance. Proc. 48th Annual Conf, Section 1-C. New York: Composites Institute, The Society of the Plastics Industry Inc., pp. 1-5.

    Google Scholar 

  • AGA NGV2. 1992. Proposed American National Standard, basic requirements for compressed natural gas vehicle (NGV) fuel containers. Draft 8. American National Standards Institute.

    Google Scholar 

  • Ahmed, S.H. and Plecnik, J.M. 1989. Transfer of composite technology to design and construction of bridges. Washington, DC: US Department of Transportation, Federal Highway Administration, Office of University Research, Contract DTRS 5683-C00043.

    Google Scholar 

  • Bank, L.C. 1989. Flexural and shear modulii of full-section fiber reinforced plastic (FRP) pultruded beams. J. Testing Evaluation, 17(1), 40–45.

    Article  Google Scholar 

  • Barbero, E.J. and GangaRao, H.V.S. 1991. SAMPE J. Part I (12) 1991. Part II(1) 1992.

    Google Scholar 

  • Barbero, E.J. 1998. Introduction to Composite Materials Design. Washington, DC: Taylor and Francis.

    Google Scholar 

  • Barbero E.J. and Raftoyiannis, I. 1993. Local buckling of FRP beams and columns. ASCE J. Mater. Civil Engng, 5(3), 339–355.

    Article  Google Scholar 

  • Barbero, E.J. and Tomblin, J. 1992. A phenomenological design equation for FRP columns with interaction between local and global buckling. Thin-Walled Structures. Composite Technol., 18, 117–131.

    Google Scholar 

  • Composite Technology Inc. 1992.

    Google Scholar 

  • Creative Pultrusions. 1989. Creative Pultrusions Design Guide. Alumn Bank, PA: Creative Pultrusions Inc.

    Google Scholar 

  • Davalos, J.F. and Salim, H A. 1992. Design of stress-laminated T-system timber bridges. Timber Bridge Information Resource Center, USDA Forest Service, Northeastern Area. Morgantown, WV.

    Google Scholar 

  • Faza, S and GangaRao, H.V.S. 1993. Pultruded fiber reinforced plastic bars, an alternative to steel reinforcement of concrete, Section 13-D, Proc. 48th Ann. Conf, pp. 1C–5C. New York: Composites Institute, The Society of the Plastics Industry, Inc.

    Google Scholar 

  • Fibergrate. 1992. Structural Fiberglass Products and Systems. Dallas, TX: Fibergrate.

    Google Scholar 

  • GangaRao, H.V.S. and Barbero, E.J. 1991. Construction: structural applications, in Encyclopedia of Composites (6), (ed. S. Lee). New York: VCH Publishers.

    Google Scholar 

  • Glaser, R.E., Moore, R. and Chiao, T.T. 1983. Life estimation of an E-glass epoxy composite under sustained tensile loading. Composites Technology Review, 5(1), 21–26.

    Article  CAS  Google Scholar 

  • Head, P. 1988. Use of fiber reinforced plastics in bridge structures. Helsinki: XIII International Association for Bridge Structures Engineering (IABSE), pp. 123-128.

    Google Scholar 

  • Iyer, S.L. 1993. First composite cable pre-stressed bridge in the USA. Proc. 38th Int. SAMPE Symp. May 10–13, pp. 1766-1771.

    Google Scholar 

  • Iyer, S.L. (ed). 1991. Advanced Composite Materials in Civil Engineering Structures, (ed. S.L. Iyer). New York: American Society of Civil Engineers.

    Google Scholar 

  • Kakihara, R., Kamiyoshi, M., Kumagai, S. and Noritake, K. 1991. A new aramid rod for the reinforcement of pre-stressedconcrete structures, in Advanced Composite Materials in Civil Engineering Structures, (ed. S.L. Iyer). New York: American Society of Civil Engineers, pp. 132–142.

    Google Scholar 

  • Koga, M., Okano, M., Kawamoto, Y., Sakai, H. and Yagi, K. 1992. Application of a tendon made of CFRP rods to a post-tensioned pre-stressed concrete bridge, in Advanced Composite Materials in Bridges and Structures, (eds. K.W. Neale and P. Labossiere). Montreal: The Canadian Society for Civil Engineering, pp. 405–414.

    Google Scholar 

  • Martine, E.A. 1993. Long-term tensile creep and stress rupture evaluation of unidirectional fiberglass-reinforced composites. Proc. Composites Institute 48th Ann. Conf., pp. 9-A/1-4.

    Google Scholar 

  • Meisseler, H-J and Preis, L. 1989. High performance glass fiber composite bars as reinforcements, in Concrete and Foundation Structures. Strabag Bau-AG information brochure.

    Google Scholar 

  • MMFG. 1992. EXTREN Fiberglass Structural Shapes Design Manual. Bristol, VA: Morrison Molded Fiberglass Co.

    Google Scholar 

  • Mochida, S., Tanaka, T. and Yagi, K. 1992. The Development And Application Of A Ground Anchor Using New Materials. Advanced Composite Materials in Bridges and Structures, (eds. K.W. Neale and P. Labossiere), Montreal: The Canadian Society For Civil Engineering, pp. 393–402.

    Google Scholar 

  • Mufti, A.A., Erki, M-A. and Jaeger, L.G. (eds). 1991. Advanced Composite Materials With Application To Bridges. Montreal: The Canadian Society for Civil Engineering.

    Google Scholar 

  • Mufti, A.A., Erki, M-A. and Jaeger, L.G. 1992. Advanced Composite Materials In Bridges And Structures In Japan Montreal: The Canadian Society for Civil Engineering.

    Google Scholar 

  • Munipalle, U.M. 1992. Analysis And Testing Of Wood-Glass Fiber Reinforced Plastic Adhesive Interface. M. S. Thesis. West Virginia University, Morgantown, WV.

    Google Scholar 

  • Neale, K.W. and Labossiere, P. (eds). 1992. Advanced Composite Materials In Bridges And Structures. Montreal: The Canadian Society For Civil Engineering.

    Google Scholar 

  • Noritake, K., Kumagai, S., Mizutani, J. and Mukae, K. 1992. Construction of a pre-stressed barge using aramid FRP rods, in Advanced Composite Materials in Bridges and Structures, (eds. K.W. Neale and P. Labossiere), Montreal: The Canadian Society For Civil Engineering, pp. 533–541.

    Google Scholar 

  • Pletcher, D. 1991. Consider structural composites, Chem. Eng. Progress, November, 44-49.

    Google Scholar 

  • Porter, M.L. and Barnes, B.A. 1991. Tensile testing of glass fiber composite rod, in Advanced Composite Materials In Civil Engineering Structures, (ed. S.L. Iyer). New York: American Society Of Civil Engineers, pp. 123–131.

    Google Scholar 

  • Priestley, M.J.N., Seible, F. and Fyfe, E. 1992. Column seismic retrofit using fiberglass-epoxy jackets, in Advanced Composite Materials in Bridges and Structures, (eds. K.W. Neale and P. Labossiere). Montreal: The Canadian Society For Civil Engineering, pp. 287–298.

    Google Scholar 

  • Raftoyiannis, L. 1993. Buckling Mode Interaction in Fiber Reinforced Composite Structures. Ph.D. Thesis. West Virginia University, Morgantown, WV.

    Google Scholar 

  • Rostasy, F.S., Hankers, C. and Ranisch, E-H. 1992. Strengthening of R/C-and P/C-structures with bonded FRP plates, in Advanced Composite Materials in Bridges and Structures, (eds. K.W. Neale and P. Labossiere). Montreal: The Canadian Society For Civil Engineering, pp. 253-263.

    Google Scholar 

  • Saadatmanesh and Ehsani. 1990. Fiber composite plates can strengthen beams. Concrete International. Farmington Hills, MI: American Concrete Institute, pp. 65-71.

    Google Scholar 

  • Sen, R., Issa, M. and Mariscal, D. 1992. Feasibility of Fiberglass Pretensioned Piles in a Marine Environment. Report No. CEM/ST/92/1, University of South Florida, Tampa, FL.

    Google Scholar 

  • Gere, J.M. and Timoshenko, S.P. 1990. Mechanics of Materials, 3rd Edn. Boston: PWS-KENT Publishing Co.

    Google Scholar 

  • Tomblin, J. 1991. A Universal Design Equation For Pultruded Composite Columns. M.S. Thesis. West Virginia University, Morgantown, WV.

    Google Scholar 

  • Tomblin, J. 1994. Compressive Strength Models For Pultruded Fiber Reinforced Composites. Ph.D. Dissertation, West Virginia University, Morgantown, WV.

    Google Scholar 

  • TUFSPAN. 1991. Technical Data and Design Guide, Forth Worth: Tufspan, p. 8.

    Google Scholar 

  • Wolf, R. and Miesseler, H-J. 1992. Experience with glass fiber pre-stressing elements for concrete bridges, in Advanced Composite Materials in Bridges and Structures, (eds. K.W. Neale and P. Labossiere). Montreal: The Canadian Society For Civil Engineering, pp. 425–433.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Barbero, E.J. (1998). Construction. In: Peters, S.T. (eds) Handbook of Composites. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6389-1_47

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6389-1_47

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-412-54020-2

  • Online ISBN: 978-1-4615-6389-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics