Immobilization and encapsulation

  • A. Nussinovitch


Flavoring materials can be encapsulated using edible films (Reineccius, 1991). Encapsulation enables the creation of a dry, free-flowing powdered flavor. The coating protects the flavoring from interaction with the food, inhibits oxidation and can enable controlled flavor release. A variety of processes can be used to encapsulate the flavoring within the film, with the latter’s properties being dependent upon processing as well as composition. Of the many processes described for flavor encapsulation, spray-drying and extrusion are the most commercially advantageous (Reineccius, 1989).


Sodium Alginate Immobilize Cell Alginate Bead Calcium Alginate Edible Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anandaraman, S. and Reineccius, G.A. (1986) Stability of spray-dried orange peel oil. Food Technol., 40(11), 88.Google Scholar
  2. Baisier, W. and Reineccius, G.A. (1989) Spray drying of food flavors: factors influencing shelf-life of encapsulated orange peel oil. Perform Flay., 14, 48–53.Google Scholar
  3. Banerjee, M., Chakrabarty, A. and Majumdor, S.K. (1982) Immobilization of yeast cells containing ß-galactosidose. Biotech. Bioeng., 24, 1839–50.CrossRefGoogle Scholar
  4. Bang, W.G., Behrendt, U., Lang, S. et al. (1983) Continuous production of L-tryptophan from indole and L-serine by immobilized Escherichia coli cells. Biotechnol. Bioeng., 25, 1013–25.CrossRefGoogle Scholar
  5. Birnbaum, S., Pendleton, R., Larsson, P. et al. (1981) Covalent stabilisation of alginate gel for entrapment of living whole cells. Biotechnol. Lett., 3, 393–400.CrossRefGoogle Scholar
  6. Brodelius, P. and Nilsson, K. (1980) Entrapment of plant cells in different matrices. FEBS Lett., 122, 312–16.CrossRefGoogle Scholar
  7. Bucke, C. (1983) Immobilized cells. Philos. Trans. R. Soc. Londonm, Series B, 300, 369–89.Google Scholar
  8. Cheetham, P.S.J. (1980) Developments in the immobilization of microbial cells and their applications, in Topics in Enzyme and Fermentation Biotechnology, vol. 4 (ed. A. Wiseman), Ellis Horwood, Chichester, NJ, pp. 189–238.Google Scholar
  9. Chen, K.C., Chen, S.J. and Houng, J.Y. (1996) Improvement of gas permeability of denitrifying PVA gel beads. Enz. Microb. Technol., 18(7), 502–6.CrossRefGoogle Scholar
  10. Chibata, I. (1981) Immobilized microbial cells with polyacrylamide gel and carrageenan and their industrial applications, in Immobilized Microbial Cells (ed. K. Venkatsubramanian) Am. Chem. Soc. Symp. Ser., 106, 187–202.Google Scholar
  11. Dacunzo, A., Dealteriis, E., Maurano, F. et al. (1996) D-Amino-acid oxidase from Trigonopsis variabilis immobilization of whole cells in natural polymeric gels for glutaryl-7aminocephalosporanic acid production. J. Ferm. Bioeng., 81(2), 138–42.CrossRefGoogle Scholar
  12. Dainty, A.L., Goulding, K.H., Robinson, P.K., Simpkins, I. and Trevan, M.D. (1986) Stability of alginate-immobilized algal cells. Biotechnol. Bioeng., 28, 210–216.CrossRefGoogle Scholar
  13. Deo, Y.M. and Gaucher, G.M. (1983) Semi-continuous production of the antibiotic patulin by immobilized cells of Pennicillium urticae. Biotechnol. Lett., 5, 125–30.CrossRefGoogle Scholar
  14. Denso, L., Dealteriis, E., Lacara, F. et al. (1996) Immobilization of Bacillus acidocaldarius whole-cell Rhodanese in polysaccharide and insolubilized gelatin gels. Biotechnol. Appl. Biochem., 23, 127–31.Google Scholar
  15. Dinelli, D. (1972) Entrapment in solid fibres. Process Biochem., 7(8), 9–12.Google Scholar
  16. Dobreva, E., Ivanova, V., Tonkova, A. et al. (1996) Influence of the immobilization conditions on the efficiency of a-amylase production by Bacillus licheniformis, 31(3), 229–34.Google Scholar
  17. Green, K.D., Gill, I. S., Khan, J.A. et al. (1996) Microencapsulation of yeast cells and their use as a biocatalyst in organic solvents. Biotechnol. Bioeng., 49(5), 535–43.CrossRefGoogle Scholar
  18. Grizeau, D. and Navarro, J.M. (1986) Glycerol production by Dunaliella tertiolecta immobilized with Ca alginate beads. Biotechnol. Lett., 8, 261–4.CrossRefGoogle Scholar
  19. Grote, W., Lee, K.J., and Rogers, P.L. (1980) Continuous ethanol production by immobilized cells of Zymomonas mobilis. Biotechnol. Lett., 2, 481–6.CrossRefGoogle Scholar
  20. Guardiola, J., Iborra, J.L., Rodenas, L. et al. (1996) Biotransformation from geraniol to nerol by immobilized grapevine cells (V. vinifera). Appl. Biochem. Biotechnol., 56(2), 169–80.CrossRefGoogle Scholar
  21. Hannoun, B.J.M. and Stephanopoulos, G. (1986) Diffusion coefficients of glucose and ethanol in cell-free and cell-occupied calcium alginate membranes. Biotechnol. Bioeng., 28, 829–35.CrossRefGoogle Scholar
  22. Jen, A.C., Wake, M.C. and Mikos, A.G. (1996) Review — hydrogels for cell immobilization. Biotechnol. Bioeng., 50(4), 357–64.CrossRefGoogle Scholar
  23. Kamboj, R.C., Raghav, N., Nandal, A. et al. (1996) Properties of cathepsin-B immobilized in calcium alginate beads. J. Chem. Technol. Biotechnol., 65(2), 149–55.CrossRefGoogle Scholar
  24. Khachatourians, G.G., Brosseau, J.D. and Child, J.J. (1982) Thymidine phosphorylase activity of anucleate minicells of E. coli immobilized in an agarose gel matrix. Biotechnol. Lett., 4, 735–40.CrossRefGoogle Scholar
  25. Kim, M.N., Ergan, F., Dhulster, P. et al. (1982) Steroid modification with immobilized mycelium of Aspergillus phoenics. Biotechnol. Lett., 4, 233–8.CrossRefGoogle Scholar
  26. Klein, J., Hackel, U., Schara, P., Washausen, P. et al. (1978) Polymer entrapment of microbial cells: preparation and reactivity of catalytic systems, in Enzyme Engineering, vol. 4, (eds G.B. Broun, G. Manecke and L.M. Wingard), Plenum Press, New York, pp. 339–41.CrossRefGoogle Scholar
  27. Klein, J. and Kressdorf, B. (1983) Improvement of productivity and efficiency in ethanol production with Ca-alginate immobilized Zymomonas mobilis. Biotechnol. Lett., 5, 497–502.CrossRefGoogle Scholar
  28. Kluge, M., Klein, J. and Wagner, F. (1982) Production of 6-aminopenicillanic acid by immobilized Pleurotus ostreatus. Biotechnol. Lett., 4, 293–6.CrossRefGoogle Scholar
  29. Krisch, J. and Szajani, B. (1996) Acetic acid fermentation of Acetobacter aceti as a function of temperature and pH. Biotechnol. Lett., 18(4), 393–6.CrossRefGoogle Scholar
  30. Krouwel, P.G., Harder, A. and Kossen, N.W.F. (1982) Tensile stress—strain measurements of materials used for immobilization. Biotechnol. Lett., 4, 103–8.CrossRefGoogle Scholar
  31. Levine, H. and Slade, L. (1989) Interpreting the behavior of low moisture foods, in Fundamental Aspects of the Dehydration of Foodstuffs (ed. T.M. Hardmann), Elsevier Applied Science, New York, pp. 71–134.Google Scholar
  32. Li, R.H., Altreuter, D.H. and Gentile, F.T. (1996) Transport characterization of hydrogen matrices for cell encapsulation. Biotechnol. Bioeng., 50(4), 365–73.CrossRefGoogle Scholar
  33. Linko, Y.Y., Pohjola, L. and Linko, P. (1977) Entrapped glucose isomerase for high fructose syrup production. Process Biochem., 12(6), 14–16.Google Scholar
  34. Margaritis, A., Bajpai, P.K. and Wallace, J.B. (1981) High ethanol productivity using small Ca-alginate beads of immobilized cells of Zymomonas mobilis. Biotechnol. Lett., 3, 613–18.CrossRefGoogle Scholar
  35. Mattiasson, B. (1983) Immobilized Cells and Organelles, vols1 and 2, CRC Press, Boca Raton, FL.Google Scholar
  36. Mosbach, K. and Mosbach, R. (1966) Entrapment of enzymes and micro-organisms in synthetic cross-linked polymers and their application in column techniques. Acta Chem. Scand., 20, 2807–10.CrossRefGoogle Scholar
  37. Nelson, K. and Labuza, T.P. (1992) Understanding the relationships between water and lipid oxidation rates using water activity and glass transition theory, in Lipid Oxidation in Foods (ed. A. St. Angelo), American Chemical Society, Washington DC, pp. 91–101.Google Scholar
  38. Nussinovitch, A. (1994) Resemblance of immobilized Trichoderma viride fungal spores in an alginate matrix to a composite material. Biotechnol. Prog., 10, 551–4.CrossRefGoogle Scholar
  39. Nussinovitch, A., Nussinovitch, M., Shapira, R. et al. (1994) Influence of immobilization of bacteria, yeasts and fungal spores on the mechanical properties of agar and alginate gels. Food Hydrocolloids, 8, 361–72.CrossRefGoogle Scholar
  40. Pothakamury, U.R. and Barbosa Canovas, G.V. (1995) Fundamental aspects of controlled release in foods. Trends Food Sci. Technol., 6(12), 397–406.CrossRefGoogle Scholar
  41. Puri, M., Marwaha, S.S. and Kothari, R.M. (1996) Studies on the applicability of alginate-entrapped naringinase for the debittering of kinnow juice. Enz. Microb. Technol., 18(4), 281–5.CrossRefGoogle Scholar
  42. Reineccius, G.A. (1989) Flavor encapsulation. Food Rev. Int., 5, 147.CrossRefGoogle Scholar
  43. Reineccius, G.A. (1991) Carbohydrate for flavor encapsulation. Food Technol., 45, 144.Google Scholar
  44. Risch, S.J. (1986) Encapsulation of flavors by extrusion, in Flavor Encapsulation (eds S.J. Risch and G.A. Reineccius), American Chemical Society, Washington, DC, pp. 103–9.Google Scholar
  45. Rochefort, W.E., Rehg, T. and Chau, P.C. (1986) Trivalent cation stabilization of alginate gel for cell immobilization. Biotechnol. Lett., 8, 115–20.CrossRefGoogle Scholar
  46. Shoichet, M.S., Li, R.H., White, M.L. et al. (1996) Stability of hydrogels used in cell encapsulation — an in vitro comparison of alginate and agarose. Biotechnol. Bioeng., 50(4), 374–81.CrossRefGoogle Scholar
  47. SivaRaman, H., Rao, B.S., Pundle, A.V. et al. (1982) Continuous ethanol production by yeast cells immobilized in open pore gelatin matrix. Biotechnol. Lett., 4, 359–64.CrossRefGoogle Scholar
  48. Stocklein, W., Eisgruber, A. and Schmidt, H.L. (1983) Conversion of L-phenylalanine to L-tyrosine by immobilized bacteria. Biotechnol. Lett., 5, 703–8.CrossRefGoogle Scholar
  49. Tampion, J. and Tampion, M.D. (1987) Immobilized Cells: Principles and Applications, Cambridge University Press, Cambridge.Google Scholar
  50. Thevenet, F. (1986) Acacia gums: stabilizers for flavor encapsulation, in Flavor Encapsulation (eds S.J. Risch and G.A. Reineccius), American Chemical Society, Washington, DC, pp. 37–44.Google Scholar
  51. Trubiano, P.C. and Lacourse, L. (1986) Emulsion-stabilizing starches: use in flavor encapsulation, in Flavor Encapsulation (eds S.J. Risch and G.A. Reineccius), American Chemical Society, Washington, DC, pp. 45–54.Google Scholar
  52. Venkatsubramanian, K., Karkare, S.B. and Vieth, W.R. (1983) Chemical engineering analysis of immobilized cell systems, in Applied Biochemistry and Bioengineering, vol. 4, Immobilized Microbial Cells (ed. I. Chibata and L.B. Wingard Jr.), Academic Press, New York, pp. 312–50.Google Scholar
  53. Vorlop, K.D. and Klein, J. (1981) Formation of spherical chitosan biocatalysts by iontropic gelation. Biotechnol. Lett., 3, 9–14.CrossRefGoogle Scholar
  54. Walsh, P.K., Isdell, F.V., Noone, S.M. et al. (1996) Microcolonies in alginate and carrageenan gel particles — effect of physical and chemical properties of gels. Enz. Microb. Technol., 18(5), 366–72.CrossRefGoogle Scholar
  55. Wang, H.Y. and Hettwer, D.J. (1982) Cell immobilization in x-carrageenan with tricalcium phosphate. Biotechnol. Bioeng., 24, 1827–38.CrossRefGoogle Scholar
  56. Wang, H.Y., Lee, S.S., Takach, Y. et al. (1982) Maximizing microbial cell loading in immobilized cell systems, in Biotechnology and Bioengineering, Symposium 12 (ed. E.L. Garden Jr.), John Wiley, New York, pp. 139–46.Google Scholar
  57. Wheatley, M.A. and Phillips, C.R. (1983) The influence of internal and external diffusional limitations on the observed kinetics of immobilized whole bacterial cells with cell-associated ß-glucosidase activity. Biotechnol. Lett., 5, 79–84.CrossRefGoogle Scholar
  58. Wiksstrom, P., Szwajcer, E., Brodelius, P. et al. (1982) Formation of a-keto acids from amino acids using immobilized bacteria and algae. Biotechnol. Lett., 4, 153–8.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1997

Authors and Affiliations

  • A. Nussinovitch
    • 1
  1. 1.Faculty of Agricultural, Food and Environmental Quality Sciences Institute of Biochemistry, Food Science and NutritionThe Hebrew University of JerusalemRehovotIsrael

Personalised recommendations