Abstract
Thirty-seven years have passed since Ferris Neave published his classic paper on the origin and speciation of the salmonid genus, Oncorhynchus. Since then, new data on fossils, chromosomes, molecules, and morphology have accumulated, and new analytical techniques for quantifying phylogenetic data have been developed. These new data are reviewed, summarized, and used to reexamine the evolutionary history of the genus. Apparently, Salmo and Oncorhynchus diverged sometime in the early Miocene (∼20 million years ago [mya]) and most of the early speciation (lineage splitting) in the genus occurred during the Miocene. By the late Miocene, or early Pliocene (∼6 mya), members of the chum (O. keta), pink (O. gorbuscha) and sockeye (O. nerka) salmon lineages were present in Idaho and Oregon. Geographically, most of the living members of the earliest divergences (the Pacific trout) are concentrated in western North America near the southern margin of the distribution of Oncorhynchus. Later divergences (the Pacific salmon) probably occurred in the Pacific Northwest and in Asia. Although processes that produced lineage splitting in the past can never be identified with certainty, one can examine genetic divergence in modern species. Thus, I use the sockeye-kokanee salmon divergence as an example of lineage splitting. I conclude that speciation in modern Oncorhynchus usually involves geographic isolation, followed by local adaptation, genetic divergence and, where divergent forms come into secondary contact, competitive interactions among forms. There is no reason to suppose that past divergences were driven by different processes. The evolutionary history of the genus suggests that most local adaptation is ephemeral and that clusters of populations (metapopulations) may be appropriate management units.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
Referecnes
Allendorf, F.W. 1978. Protein polymorphism and the rate of loss of duplicate gene expression. Nature 272: 76–79.
Allendorf, F.W. and G.H. Thorgaard. 1984. Tetraploidy and the evolution of salmon fishes, p. 1–53. In B. Turner (ed.), Evolutionary Genetics of Fishes. Plenum Press, New York.
Behnke, R.J. 1992. Native trout of western North America. American Fisheries Society, Monograph 6. American Fisheries Society, Bethesda, Maryland
Brooks, D.R. and D.A. McLennan. 1992. Historical ecology as a research program, p. 76–113. In R. L. Mayden (ed.), Systematics, Historical Ecology, and North American Freshwater Fishes. Stanford University Press, Stanford, California
Cavender, T.M. and R.R. Miller. 1972. Smilidonichthys rastrosus a new Pliocene salmonid fish. Museum of Natural History, University of Oregon, Bulletin 18.
Cavender, T.M. and R.R. Miller. 1982. Salmo australes, a new species of fossil salmonid from southwestern Mexico. Contributions from the Museum of Paleontology, University of Michigan 26: 1–17.
Devlin, R.H. 1993. Sequence of sockeye salmon type 1 and 2 growth hormone genes and the relationship of rainbow trout with Atlantic and Pacific salmon. Canadian Journal of Fisheries and Aquatic Sciences 50: 1738–1748.
Du, S.J., R.H. Devlin, and C.L. Hew. 1993. Genomic structure of growth hormone genes in chinook salmon (Oncorhynchus tshawytscha): presence of two functional genes, GH-I and GH-II, and a male-specific pseudogene, GH-W. DNA and Cell Biology 12: 739–751.
Einarsson, T., D.M. Hopkins, and R.R. Doell. 1967. The stratigraphy of Tjornes, northern Iceland, and the history of the Bering land bridge, p. 312–325. In D. M. Hopkins (ed.), The Bering Land Bridge. Stanford University Press, Stanford, California.
Fitch, J.E. 1970. Fish remains, mostly otoliths and teeth, from the Palos Verdes Sand (late Pleistocene) of California. Contributions to Science, Los Angeles County Museum 199.
Foote, C.J. and P.A. Larkin. 1988. The role of mate choice in the assortative mating of anadromous and nonanadromous sockeye salmon (Oncorhynchus nerka). Behaviour 106: 43–62.
Foote, C.J., C.C. Wood, and R.E. Withler. 1989. Biochemical genetic comparison between sockeye salmon and kokanee, the anadromous and non-anadromous forms of Oncorhynchus nerka. Canadian Journal of Fisheries and Aquatic Sciences 46: 149–158.
Foote, C.J., C.C. Wood, W.C. Clarke, and J. Blackburn. 1992. Circannual cycle of seawater adaptability in Oncorhynchus nerka: genetic difference between sympatric sockeye salmon and kokanee. Canadian Journal of Fisheries and Aquatic Sciences 49: 99–109.
Hanson, S.J. and H.D. Smith. 1967. Mate selection in a population of sockeye salmon (Oncorhynchus nerka) of mixed age groups. Journal of the Fisheries Research Board of Canada 24: 1955–1977.
Hartley, S.E. 1987. The chromosomes of salmonid fishes. Biological Reviews 62: 197–214.
Healey, M.C. 1983. Coastwide distribution and ocean migration patterns of stream-and ocean-type chinook salmon (Oncorhynchus tshawytscha). Canadian Field-Naturalist 97: 427–433.
Hikita, T. 1962. Ecological and morphological studies of the genus Oncorhynchus (Salmonidae) with particular consideration on phylogeny. Scientific Reports of the Hokkaido Salmon Hatchery, No. 17.
Kato, F. 1978. Morphological and ecological studies on two forms of Oncorhynchus rhodurus found in Lake Biwa and adjoining inlets. Japanese Journal of Ichthyology 25: 197–204.
Kelso, B.W., T.G. Northcote, and C.F. Wehrhahn. 1981. Genetic and environmental aspects of the response to water current by rainbow trout (Salmo gairdneri) originating from inlet and outlet streams of two lakes. Canadian Journal of Zoology 59: 2177–2185.
Kendall, A.W. and R.J. Behnke. 1984. Salmonidae: development and relationships, p. 142–149. In Moser, H. G. (ed.), Ontogeny and Systematics of Fishes. American Society of Ichthyologists and Herpetologists, Special Publication 1. Allen Press, Lawrence, Kansas.
Kimmel, P.G. 1975. Fishes of the Miocene-Pliocene Deer Butte formation, southeast Oregon. Museum of Paleontology, University of Michigan, Papers on Paleontology, no. 14: 69–87.
Kurenkov, S.I. 1978. Two reproductively isolated groups of Kokanee salmon, Oncorhynchus nerka kennerlyi, from Lake Kronotskiy. Journal of Ichthyology 18: 526–533.
Lieder, S.A., M.W. Chilcote, and J.J. Loch. 1984. Spawning characteristics of sympatric populations of steelhead trout (Salmo gairdneri): evidence for partial reproductive isolation. Canadian Journal of Fisheries and Aquatic Sciences 41: 1454–1467.
Lim, S. T., and G. S. Bailey. 1977. Gene duplication in salmonid fish: evidence for duplicated but catalytically equivalent A(4) lactate dehydrogenases. Biochemical Genetics 15: 707–721.
Lim, S.T., R.M. Kay, and G.S. Bailey. 1975. Lactate dehydrogenase isoenzymes of salmonid fish: evidence for unique and rapid functional divergence of duplicated H4 lactate dehydrogenases. Journal of Biological Chemistry 250: 1790–1800.
Meffe, G. 1992. Techno-arrogance and halfway technologies: salmon hatcheries on the Pacific coast of North America. Conservation Biology 6: 350–354.
Murata, S., Takasaki, N., Saitoh, H., and N. Okada. 1993. Determination of the phylogenetic relationships among Pacific salmonids by using short interspersed elements (SINEs) as temporal landmarks of evolution. Proceedings of the National Academy of Science, USA 90: 6995–6999.
Nakano, S., T. Kachi, and M. Nagoshi. 1990. Restricted movement of the fluvial form of red-spotted masu salmon, Oncorhynchus masou rhodurus, in a mountain stream, central Japan. Japanese Journal of Ichthyology 38: 158–163.
Neave, F. 1958. The origin and speciation of Oncorhynchus. Transactions of the Royal Society of Canada, Third Series, Vol. 52: 25–39.
Norden, C.R. 1961. Comparative osteology of representative salmonid fishes, with particular reference to the grayling (Thymallus arcticus) and its phylogeny. Journal of the Fisheries Research Board of Canada 18: 679–791.
Sanford, C.P.J. 1990. The phylogenetic relationships of salmonoid fishes. Bulletin British Museum of Natural History (Zoology) 56: 145–153.
Schluter, D. and J.D. McPhail. 1992. Ecological character displacement and speciation in sticklebacks. American Naturalist 140: 85–108.
Schluter, D. and J.D. McPhail. 1993. Character displacement and replicate adaptive radiation. Trends in Evolution and Ecology 8: 197–200.
Shedlock, A.M., J.D. Parker, D.A. Crispin, T.W. Pietsch, and G.C. Buriner. 1992. Evolution of the salmonid mitochondrial control region. Molecular Phylogenetics and Evolution 1: 179–192.
Smith, G.R. 1975. Fishes of the Pliocene Glenns Ferry formation, southwest Idaho. Museum of Paleontology, University of Michigan, Papers on Paleontology, no. 14: 1–68.
Smith, G.R. 1981. Late Cenozoic freshwater fishes of North America. Annual Review of Ecology and Systematics 12: 163–193.
Smith, G.R. 1992. Introgression in fishes: significance for paleontology, cladistics, and evolutionary rates. Systematic Biology 41: 41–57.
Smith, G.R. and R.R. Miller. 1985. Taxonomy of fishes from Miocene Clarkia Lake beds, Idaho, p. 75–83. In C.J. Smiley (ed.), Late Cenozoic History of the Pacific Northwest. Pacific Division, American Association for the Advancement of Science, San Francisco, California.
Smith, G.R. and R.F. Stearley. 1989. The classification and scientific names of rainbow and cutthroat trout. Fisheries 14: 4–10.
Stearley, R.F. 1992. Historical ecology of the Salmoninae, p. 622–658. In R. L. Mayden (ed.), Systematics, Historical Ecology, and North American Freshwater Fishes. Stanford University Press, Stanford, California.
Stearley, R.F. and G.R. Smith. 1993. Phylogeny of the Pacific trouts and salmons (Oncorhynchus) and genera of the family Salmonidae. Transactions of the American Fisheries Society 122: 1–33.
Swain, D.P. and L.B. Holtby. 1989. Differences in morphology and agonistic behaviour in coho salmon (Oncorhynchus kisutch) rearing in a lake or its tributary stream. Canadian Journal of Fisheries and Aquatic Sciences 46: 1406–1414.
Taylor, E.B. 1990. Environmental correlates of life history variation in juvenile chinook salmon, Oncorhynchus tshawytscha (Walbaum). Journal of Fish Biology 37: 1–17.
Taylor, E.B. 1991. A review of local adaptation in Salmonidae, with particular reference to Pacific and Atlantic salmon. Aquaculture 98: 185–207.
Taylor, E.B. and C.J. Foote. 1991. Critical swimming velocities of juvenile sockeye salmon and kokanee, the anadromous and non-anadromous forms of Oncorhynchus nerka. Journal of Fish Biology 38: 407–419.
Taylor, E. B., C. J. Foote, and C. C. Wood. 1996. Molecular evidence for parallel life history evolution within a Pacific salmon (sockeye salmon and kokanee, Oncorhynchus nerka). Evolution 50: 401–416.
Thomas, W.K. and A.T. Beckenbach. 1989. Variation in salmonid mitochondrial DNA: evolutionary constraints and mechanisms of substitution. Journal of Molecular Evolution 29: 233–245.
Thomas, W.K., R.E. Withler, and A.T. Beckenbach. 1986. Mitochondrial DNA analysis of Pacific salmonid evolution. Canadian Journal of Zoology 64: 1058–1064.
Utter, F.M., J.E. Seeb, and L.W. Seeb. 1993. Complementary uses of ecological and biochemical genetic data in identifying and conserving salmon populations. Fisheries Research 18: 59–76.
Verspoor, E. and L.J. Cole. 1989. Genetically distinct sympatric populations of resident and anadromous Atlantic salmon, Salmo salar. Canadian Journal of Zoology 67: 1453–1461.
Williams, G.C. 1992. Natural selection: domains levels and challenges. Oxford Series in Ecology and Evolution. Oxford.
Wilson, G.M., W.K. Thomas, and A.T. Beckenbach. 1985. Intra-and inter-specific mitochondria) DNA sequence divergence in Salmo: rainbow, steelhead, and cutthroat trouts. Canadian Journal of Zoology 63: 2088–2094.
Wilson, M.V.H. 1977. Middle Eocene Freshwater Fish from British Columbia. Royal Ontario Museum, Life Sciences Contribution 11B: 1–61.
Wilson, M.V.H. and R.R.G. Williams. 1992. Phylogenetic, biogeographic, and ecological significance of early fossil records of North American freshwater teleostean fishes, p. 224–244. In R. L. Mayden (ed.), Systematics, Historical Ecology, and North American Freshwater Fishes. Stanford University Press, Stanford, California.
Wood, C.C. and C.J. Foote. 1990. Genetic differences in the early development and growth of sympatric sockeye salmon and kokanee (Oncorhynchus nerka). Canadian Journal of Fisheries and Aquatic Sciences 47: 2250–2260.
Editor information
Rights and permissions
Copyright information
© 1997 Springer Science+Business Media Dordrecht
About this chapter
Cite this chapter
McPhail, J.D. (1997). The Origin and Speciation of Oncorhynchus Revisited. In: Stouder, D.J., Bisson, P.A., Naiman, R.J. (eds) Pacific Salmon & their Ecosystems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6375-4_4
Download citation
DOI: https://doi.org/10.1007/978-1-4615-6375-4_4
Publisher Name: Springer, Boston, MA
Print ISBN: 978-1-4613-7928-7
Online ISBN: 978-1-4615-6375-4
eBook Packages: Springer Book Archive