Skip to main content

Origins of Chromosome Replication

  • Chapter
Bacterial Genomes

Abstract

The first obligatory step for replication of duplex DNA is strand separation. Duplex melting (unwinding) leading to initiation of bacterial chromosome replication normally occurs at a fixed site on the chromosome termed oriC. This local duplex unwinding is effected by specific binding of an initiator, DnaA protein encoded by the dnaA gene, to 9-bp repeated sequences (DnaA boxes) which are clustered within the oriC site. The DnaA box sequence and the amino acid sequence of DnaA protein are evolutionarily well conserved among eubacteria. Furthermore, with a few exceptions, most eubacteria have a gene arrangement in which the oriC region is located next to the dnaA gene. The arrangements of several genes in the vicinity of dnaA are also well conserved. The evolutionary conservation of the DnaA protein and DnaA box sequences suggests that the initiation mechanism for chromosome replication in eubacteria has been largely conserved. In this chapter, the structures of the oriC sites for several species of eubacteria are reviewed. At least in E. coli, two other normally repressed chromosome replication systems are activated under certain specific conditions. The origins (oriM and oriK) of these alternative forms of replication are also summarized. The readers are referred to recent reviews for more details of the subjects (Messer and Weigel, 1996; Skarstad and Boye, 1994; Yoshikawa and Ogasawara, 1991; Asai and Kogoma, 1994).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alonso, J. C., and L. M. Fisher. 1995. Nucleotide sequence of the recF gene cluster from Staphylococcus aureus and complementation analysis in Bacillus subtilis recF mutants. Mol. Gen. Genet. 246:680–686.

    Article  PubMed  CAS  Google Scholar 

  • Asai, T., D. B. Bates, and T. Kogoma. 1994a. DNA replication triggered by double-stranded breaks in E. coli: dependence on homologous recombination functions. Cell 78:1051–1061.

    Article  PubMed  CAS  Google Scholar 

  • Asai, T., M. Imai, and T. Kogoma. 1994b. DNA damage-inducible replication of the Escherichia coli chromosome is initiated at separable sites within the minimal oriC. J. Mol. Biol. 235:1459–1469.

    Article  PubMed  CAS  Google Scholar 

  • Asai, T., and T. Kogoma. 1994. D-loops and R-loops: alternative mechanisms for the initiation of chromosome replication in Escherichia coli. J. Bacteriol. 176:1807–1812.

    PubMed  CAS  Google Scholar 

  • Asai, T., S. Sommer, A. Bailone, and T. Kogoma. 1993. Homologous recombination-dependent initiation of DNA replication from DNA damage-inducible origins in Escherichia coli. EMBO J. 12:3287–3295.

    PubMed  CAS  Google Scholar 

  • Asai, T., M. Takanami, and M. Imai. 1990. The AT richness and gid transcription determine the left border of the replication origin of the E. coli chromosome. EMBO J. 9:4065–4072.

    PubMed  CAS  Google Scholar 

  • Bates, D. B., T. Asai, Y. Cao, M. W. Chambers, G. W. Cadwell, E. Boye, and T. Kogoma. 1995. The DnaA box R4 in the minimal oriC is dispensable for initiation of Escherichia coli chromosome replication. Nucl. Acids Res. 23:3119–3125.

    Article  PubMed  CAS  Google Scholar 

  • Calcutt, M. J., and F. J. Schmidt. 1992. Conserved gene arrangement in the origin region of the Streptomyces coelicolor chromosome. J. Bacteriol. 174:3220–3226.

    Google Scholar 

  • de Massy, B., O. Fayet, and T. Kogoma. 1984. Multiple origin usage for DNA replication in sdrA (rnh) mutants of Escherichia coli K12: initiation in the absence of oriC. J. Mol. Biol. 178:227–236.

    Article  PubMed  Google Scholar 

  • Fujita, M. Q., H. Yoshikawa, and N. Ogasawara. 1990. Structure of the dnaA region of Micrococcus luteus: conservation and variations among eubacteria. Gene 93:73–78.

    Article  PubMed  CAS  Google Scholar 

  • Fujita, M. Q., H. Yoshikawa, and N. Ogasawara. 1992. Structure of the dnaA and DnaA-box region in the Mycoplasma capricolum chromosome: conservation and variations in the course of evolution. Gene 110:17–23.

    Article  PubMed  CAS  Google Scholar 

  • Hirota, Y., A. Oka, K. Sugimoto, K. Asada, H. Sasaki, and M. Takanami. 1981. Escherichia coli origin of replication: structural organization of the region essential for autonomous replication and the recognition frame model, in The Initiation of DNA Replication, ICN-UCLA Symp. Mol. and Cell. Biol. pp. 1–12. D. S. Ray, ed. Academic Press, New York.

    Google Scholar 

  • Hong, X., G. W. Cadwell, and T. Kogoma. 1995. Escherichia coli RecG and RecA proteins in R-loop formation. EMBO J. 14:2385–2392.

    PubMed  CAS  Google Scholar 

  • Hsu, J., D. Bramhill, and C. M. Thompson. 1994. Open complex formation by DnaA initiation protein at the Escherichia coli chromosomal origin requires the 13-mers precisely spaced relative to the 9-mers. Mol. Microbiol. 11:903–911.

    Article  PubMed  CAS  Google Scholar 

  • Kogoma, T. 1996. Recombination by replication. Cell 85:625–627.

    Article  PubMed  CAS  Google Scholar 

  • Kogoma, T., G. W. Cadwell, K. G. Barnard, and T. Asai. 1996. Requirement of the DNA replication priming protein, PriA, for homologous recombination and double-strand break repair. J. Bacteriol. 178:1258–1264.

    PubMed  CAS  Google Scholar 

  • Kogoma, T., and K. von Meyenburg. 1983. The origin of replication, oriC, and the dnaA protein are dispensable in stable DNA replication (sdrA) mutants of Escherichia coli K12. EMBO J. 2:463–468.

    PubMed  CAS  Google Scholar 

  • Kornberg, A., and T. A. Baker. 1992. DNA replication, 2nd ed. W. H. Freeman and Co., New York.

    Google Scholar 

  • Marczynski, G. T., and L. Shapiro. 1992. Cell-cycle control of a cloned chromosomal origin of replication from Caulobacter crescentus. J. Mol. Biol. 226:959–977.

    Article  PubMed  CAS  Google Scholar 

  • Messer, W., and C. Weigel. 1996. Initiation of chromosome replication, in Escherichia coli and Salmonella typhimurium, 2nd ed. R. C. Neidhardt, J. L. Ingraham, E.C.C. Lin, K. B. Low, B. Magasanik, W. S. Reznikoff, M. Riley, M. Schaechter and H. E. Umbarger eds., Washington, D. C. American Society for Microbiology, pp. 1579–1601.

    Google Scholar 

  • Moriya, S., T. Atlung, F. G. Hansen, H. Yoshikawa, and N. Ogasawara. 1992. Cloning of an autonomously replicating sequence (ars) from the Bacillus subtilis chromosome. Mol. Microbiol. 6:309–315.

    Article  PubMed  CAS  Google Scholar 

  • Moriya, S., W. Firshein, H. Yoshikawa, and N. Ogasawara. 1994. Replication of a Bacillus subtilis oriC plasmid in vitro. Mol. Microbiol. 12:469–478.

    Article  PubMed  CAS  Google Scholar 

  • Oka, A., H. Sasaki, K. Sugimoto, and M. Takanami. 1984. Sequence organization of replication origin of the Escherichia coli K-12 chromosome. J. Mol. Biol. 176:443–458.

    Article  PubMed  CAS  Google Scholar 

  • Oka, A., K. Sugimoto, M. Takanami, and Y. Hirota. 1980. Replication origin of the Escherichia coli K-12 chromosome: The size and structure of the minimum DNA segment carrying the information for autonomous replication. Mol. Gen. Genet. 178:9–20.

    Article  PubMed  CAS  Google Scholar 

  • Renaudin, J., A. Marais, E. Verdin, S. Duret, X. Foissac, F. Laigret, and J. M. Bove. 1995. Integrative and free Spiroplasma citri oriC plasmids: expression of the Spiroplasma phoeniceum spiralin in Spiroplasma citri. J. Bacteriol. 177:2870–2877.

    PubMed  CAS  Google Scholar 

  • Skarstad, K., and E. Boye. 1994. The initiation protein DnaA: evolution, properties and function. Biochim. Biophys. Acta 1217:111–130.

    Article  PubMed  CAS  Google Scholar 

  • von Meyenburg, K., E. Boye, K. Skarstad, L. Koppes, and T. Kogoma. 1987. Mode of initiation of constitutive stable DNA replication in RNase H-defective mutants of Escherichia coli K-12. J. Bacteriol. 169:2650–2658.

    Google Scholar 

  • von Meyenburg, K., and F. G. Hansen. 1980. The origin of replication, oriC, of Escherichia coli chromosome: gene near oriC and construction of oriC deletion mutations. ICN-UCLA Symp. Mol. Cell. Biol. 21:137–159.

    Google Scholar 

  • Woelker, B., and W. Messer. 1993. The structure of the initiation complex at the replication origin, oriC, of Escherichia coli. Nucl. Acids Res. 21:5025–5033.

    Article  PubMed  CAS  Google Scholar 

  • Ye, F., J. Renaudin, J. Bove, and J.-M. Laigret. 1994. Cloning and sequencing of the replication origin (oriC) of the Spiroplasma citri chromosome and construction of autonomously replicating artificial plasmids. Curr. Microbiol. 29:23–29.

    Article  PubMed  CAS  Google Scholar 

  • Yee, T. W., and D. W. Smith. 1990. Pseudomonas chromosomal replication origins: a bacterial class distinct from Escherichia coli-type origins. Proc. Natl. Acad. Sci. USA 87:1278–1282.

    Article  PubMed  CAS  Google Scholar 

  • Yoshikawa, H., and N. Ogasawara. 1991. Structure and function of DnaA and the DnaA-box in eubacteria: evolutionary relationship of bacterial replication origins. Mol. Microbiol. 5:2589–2597.

    Article  PubMed  CAS  Google Scholar 

  • Zakrzewska-Czerwinska, J., and H. Schrempf. 1992. Characterization of an autonomously replicating region from the Streptomyces lividans chromosome. J. Bacteriol. 174:2688–2693.

    PubMed  CAS  Google Scholar 

  • Zweigler, G. and L. Shapiro. 1994. Expression of Caulobacter dnaA as a function of the cell cycle. J. Bacteriol. 176:401–408.

    Google Scholar 

  • Zyskind, J. W., J. M. Cleary, W. S. A. Brusilow, N. E. Harding, and D. W. Smith. 1983. Chromosomal replication origin from the marine bacterium Vibrio harveyi functions in Escherichia coli: oriC consensus sequence. Proc. Natl. Acad. Sci. USA 80:1164–1168.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kogoma, T. (1998). Origins of Chromosome Replication. In: de Bruijn, F.J., Lupski, J.R., Weinstock, G.M. (eds) Bacterial Genomes. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6369-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6369-3_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7925-6

  • Online ISBN: 978-1-4615-6369-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics