Insertion Sequences and Transposons

  • Mark S. Chandler


With the sequence of two bacterial genomes complete (Fleischmann et al., 1995; Fraser et al., 1995) and several more near completion, it is now possible to view the entire genetic structure of an organism with a new perspective. Yet this perspective is not a static one. As we learn more about various bacterial genomes, the number of characterized bacterial insertion sequences (ISs) continues to increase. Examples are known from a wide range of Gram-negative and Gram-positive bacterial species as well as from the archaebacteria (reviewed by Galas and Chandler, 1989; Murphy, 1989; Charlebois and Doolittle, 1989). ISs are normal constituents not only of many bacterial chromosomes but also of some plasmids and bacteriophages. The prevalence of transposable elements (ISs and transposons) with their capacity for moving from one site in the genome to another, for modifying gene expression, and for promoting genome rearrangements, contributes significantly to a genome in a state of continuous change.


Transposable Element Inverted Repeat Insertion Sequence Polar Mutation Transposase Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arthur, A. and D. Sherratt. 1979. Dissection of the transposition process: a transposon-encoded site-specific recombination system. Mol. Gen. Genet. 115:267–274.CrossRefGoogle Scholar
  2. Benjamin, H. W. and N. Kleckner. 1989. Intramolecular transposition by Tn10. Cell 59:373–383.PubMedCrossRefGoogle Scholar
  3. Charlebois, R. L. and W. F. Doolittle. 1989. Transposable elements and genome structure in Halobacteria. In Mobile DNA. D. E. Berg and M. M. Howe, eds. pp. 297–307. American Society for Microbiology, Washington, D.C.Google Scholar
  4. Craig, N. L. 1991. Tn7: a target site-specific transposon. Mol. Microbiol. 5:2569–2573.PubMedCrossRefGoogle Scholar
  5. Derbyshire, K. M., L. Hwang, and N. D. F. Grindley. 1987. Genetic analysis of the insertion sequence IS903 transposase with its terminal inverted repeats. Proc. Natl. Acad. Sci. USA. 84:8049–8053.PubMedCrossRefGoogle Scholar
  6. Fiandt, M., W. Szybalski, and M. H. Malamy. 1972. Polar mutations in lac, gal, and phage lambda consist of a few IS-DNA sequences inserted in either orientation. Mol. Gen. Genet. 119:223–231.PubMedCrossRefGoogle Scholar
  7. Fleischmann, R. D., M. D. Adams, O. White, et al. (1995). Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269:496–512.PubMedCrossRefGoogle Scholar
  8. Fraser, C. M., J. D. Gocayne, O. White, et al. 1995. The minimal gene complement of Mycoplasma genitalium. Science 270:397–403.PubMedCrossRefGoogle Scholar
  9. Galas, D. J. and M. Chandler. 1989. Bacterial insertion sequences. In Mobile DNA. D. E. Berg and M. M. Howe, eds. pp. 109–162. American Society for Microbiology, Washington, D.C.Google Scholar
  10. Hirsch, H.-J., P. Starlinger, and P. Brachet. 1972. Two kinds of insertions in bacterial genes. Mol. Gen. Genet. 119:191–206.PubMedCrossRefGoogle Scholar
  11. Hu, S., E. Ohtsubo, N. Davidson, and H. Saedler. 1975a. Electron microscopy heteroduplex studies of sequence relations among bacterial plasmids: identification and mapping of insertion sequences IS1 and IS2 in F and R plasmids. J. Bacteriol. 122:764–775.PubMedGoogle Scholar
  12. Hu, S., K. Ptashne, S. N. Cohen, and N. Davidson. 1975b. αβ sequence of F is IS3. J. Bacteriol. 123:687–692.PubMedGoogle Scholar
  13. Huisman, O., P. R. Errada, L. Signou, and N. Kleckner. 1989. Mutational analysis of IS10’s outside end. EMBO J. 8:2101–2109.PubMedGoogle Scholar
  14. Iida, S., J. Meyer, and W. Arber. 1978. The insertion element IS1 is a natural constituent of coliphage P1 DNA. Plasmid 1:357–365.PubMedCrossRefGoogle Scholar
  15. Jakowec, M., P. Prentki, M. Chandler, and D. J. Galas. 1988. Mutational analysis of the open reading frames in the transposable element IS1. Genetics 120:47–55.PubMedGoogle Scholar
  16. Jordan, E. H., H. Saedler, and P. Starlinger. 1968. 0° and strong polar mutations in the gal operon are insertions. Mol. Gen. Genet. 102:353–363.PubMedCrossRefGoogle Scholar
  17. Kleckner, N., D. Morisato, D. Roberts, and J. Bender. 1984. Mechanism and regulation of Tn10 transposition. Cold Spring Harbor Symp. Quant. Biol. 49:235–244.PubMedCrossRefGoogle Scholar
  18. Kleckner, N. 1990. Regulation of transposition in bacteria. Annu. Rev. Cell Biol. 6:297–327.PubMedCrossRefGoogle Scholar
  19. Ljungquist, E. and A. I. Bukhari. 1977. State of prophage Mu DNA upon induction. Proc. Natl. Acad. Sci. USA 74:3143–3147.PubMedCrossRefGoogle Scholar
  20. Murphy, E. 1989. Transposable elements in gram-positive bacteria. In Mobile DNA. D. E. Berg and M. M. Howe, eds. pp. 269–288. American Society for Microbiology, Washington, D.C.Google Scholar
  21. Shapiro, J. A. 1979. Molecular model for the transposition and replication of bacteriophage Mu and other transposable elements. Proc. Natl. Acad. Sci. USA 76:1933–1937.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Mark S. Chandler

There are no affiliations available

Personalised recommendations