Skip to main content

Prophages and Cryptic Prophages

  • Chapter
Bacterial Genomes

Abstract

A large group of natural bacteriophages (called temperate) can establish a permanent relationship with their hosts (lysogeny), where most viral functions are repressed and the phage genome (prophage) is transmitted vertically from mother to daughters at cell division. Some prophages are inserted into the bacterial chromosome (either by site-specific recombination, like coliphage λ, or by transposition, like coliphage Mu-1), whereas others, like coliphage P1, establish themselves as plasmids. Established lysogens frequently suffer mutations or partial prophage deletions that destroy genes needed for lytic development. The prophage in such cases is called defective or cryptic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anilionis, A. and M. Riley. 1980. Conservation and variation of nucleotide sequences within related genomes: Escherichia coli strains. J. Bacteriol. 143:355–365.

    PubMed  CAS  Google Scholar 

  • Barondes, J. J. and J. Beckwith. 1990. A bacterial virulence determinant encoded by lysogenic coliphage lambda. Nature 346:871–874.

    Article  Google Scholar 

  • Barreiro, V. and E. Haggård-Ljungquist. 1992. Attachment sites for bacteriophage P2 on the Escherichia coli chromosome. DNA sequences, localization on the physical map, and detection of a P2-like remnant in E. coli K-12 derivatives. J. Bacteriol. 174:4086–4093.

    PubMed  CAS  Google Scholar 

  • Dosch, D. C., G. K. Helmer, S. H. Sutton, et al. 1991. Genetic analysis of potassium transport loci in Escherichia coli: evidence for three constitutive systems moderating uptake of potassium. J. Bacteriol. 173:687–696.

    PubMed  CAS  Google Scholar 

  • Espion, D., K. Kaiser, and C. Dambly-Chaudiere. 1983. A third defective prophage of Escherichia coli K12 defined by the λ derivative, λ-qin III. J. Mol. Biol. 170:611–633.

    Article  PubMed  CAS  Google Scholar 

  • Greener, A. and C. W. Hill. 1980. Identification of a novel genetic element in Escherichia coli K-12. J. Bacteriol. 144:312–321.

    PubMed  CAS  Google Scholar 

  • Highton, P. J., Y. Chang, W. R. Marcotte, Jr. and C. A. Schnaitman. 1985. Evidence that the outer membrane porin protein gene nmpC of Escherichia coli K-12 lies within the defective qsr’ prophage. J. Bacteriol. 162:256–262.

    PubMed  CAS  Google Scholar 

  • Kaiser, K. and N. Murray. 1980. On the nature of SbcA mutations in E. coli K-12. Mol. Gen. Genet. 179:555–563.

    Article  PubMed  CAS  Google Scholar 

  • Lederberg, E. M. 1951. Lysogenicity in E. coli K12. Genetics 36:560.

    Google Scholar 

  • Lindsey, D. R., D. A. Mullins, and J. P. Walker. 1989. Characterization of the cryptic lambdoid prophage DLP12 of Escherichia coli and overlap of the DLP12 integrase gene with the tRNA gene argU. J. Bacteriol. 171:6197–6205.

    PubMed  CAS  Google Scholar 

  • Parma, D. H., M. Snyder, S. Sobolevski, et al. 1972. The Rex system of bacteriophage λ tolerance and altruistic cell death. Genes Dev. 6:497–510.

    Article  Google Scholar 

  • Stoltzfus, A. B. 1991. A survey of natural variation in the trp-ton region of the E. coli chromosome. Ph.D. thesis, University of Iowa, 234 pp.

    Google Scholar 

  • Strathern, A. and I. Herskowitz. 1975. Defective prophage in Escherichia coli K12 strains. Virology 67:136–148.

    Article  PubMed  CAS  Google Scholar 

  • Thurm, P. and A. J. Garro. 1975. Isolation and characterization of prophage mutants of the defective Bacillus subtilis bacteriophage PBSX. J. Virol. 16:184–191.

    PubMed  CAS  Google Scholar 

  • Yagil, E., L. Dorgai, and R. Weisberg. 1995. Identifying determinants of recombination specificity: construction and characterization of chimeric bacteriophage integrases. J. Mol. Biol. 252:163–177.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Campbell, A.M. (1998). Prophages and Cryptic Prophages. In: de Bruijn, F.J., Lupski, J.R., Weinstock, G.M. (eds) Bacterial Genomes. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6369-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6369-3_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7925-6

  • Online ISBN: 978-1-4615-6369-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics