Chromosomal Organization: Nucleoids, Chromosomal Folding, and DNA Topology

  • Karl Drlica
  • Conrad L. Woldringh


The bacterial chromosome (nucleoid), unlike the eukaryotic nucleus, is not bounded by a membrane. Nevertheless, it is a distinct structure that exhibits lobules when multiple replication forks occur and an elongated shape that may arise from coupled transcription-translation taking place at the nucleoid periphery. Since the nucleoid can be isolated with its DNA intact, a variety of topological experiments have been possible. Most have focused on DNA supercoiling, which is controlled largely by the enzymatic activity of DNA gyrase. A second enzyme, DNA topoisomerase I, acts as a safety valve to prevent the accumulation of excess supercoiling. Since negative supercoiling levels respond to changes in the extracellular environment, and since many activities of DNA are affected by supercoiling, supercoiling is potentially important as a component of global regulatory circuits. The nucleoid contains a variety of small proteins, some of which appear to increase the flexibility of DNA. The protein HU facilitates both gyrase activity and site-specific protein-DNA interactions. As a consequence of replication, interlinking occurs between daughter chromosomes, and a decatenase, topoisomerase IV, appears to be responsible for separating them so chromosome segregation can occur.


Replication Fork Safety Valve Bacterial Chromosome Oxolinic Acid Daughter Chromosome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, D., E. Shekhtman, E. Zechiedrich, M. Schmid, and N. Cozzarelli. 1992. The role of topoisomerase IV in partitioning bacterial replicons and the structure of catenated intermediates in DNA replication. Cell 71:277–288.PubMedCrossRefGoogle Scholar
  2. Balke, V. and J.D. Gralla. 1987. Changes in the linking number of supercoiled DNA accompany growth transitions in Escherichia coli. J. Bacteriol. 169:4499–4506.PubMedGoogle Scholar
  3. Bensaid, A., A. Almeida, K. Drlica, and J. Rouviere-Yaniv. 1996. Cross-talk between topoisomerase I and HU in Escherichia coli. J. Mol. Biol. 256:292–300.PubMedCrossRefGoogle Scholar
  4. Broyles, S. and D. E. Pettijohn. 1986. Interaction of the E. coli HU protein with DNA: evidence for formation of nucleosome-like structures with altered DNA helical pitch. J. Mol. Biol. 187:47–60.PubMedCrossRefGoogle Scholar
  5. Cairns, J. 1963. The chromosome of Escherichia coli. Cold Spring Harbor Symp. Quant. Biol. 28:43–46.CrossRefGoogle Scholar
  6. Camacho-Carranza, R., J. Membrillo-Hernandez, J. Ramirez-Santos, J. Castro-Dorantes, V. C. Sanchez, and M. C. Gomez-Eichelmann. 1995. Topoisomerase activity during the heat shock response in Escherichia coli K-12. J. Bacteriol. 177:3619–3622.PubMedGoogle Scholar
  7. Chen, C.-R., M. Malik, M. Snyder, and K. Drlica. 1996. DNA gyrase and topoisomerase IV on the bacterial chromosome: quinolone-induced DNA cleavage. J. Mol. Biol. 258:627–637.PubMedCrossRefGoogle Scholar
  8. Craigie, R., D. Arndt-Jovin, and K. Mizuuchi. 1985. A defined system for the DNA strand-transfer reaction at the initiation of bacteriophage Mu transposition: protein and DNA substrate requirements. Proc. Natl. Acad. Sci. U.S.A. 82:7570–7574.PubMedCrossRefGoogle Scholar
  9. DiNardo, S., K. Voelkel, R. Sternglanz, A. Reynolds, and A. Wright. 1982. Escherichia coli DNA topoisomerase I mutants have compensatory mutations in DNA gyrase genes. Cell 31:43–51.CrossRefGoogle Scholar
  10. Dorman, C., G. Barr, N. NiBhriain, and C. Higgins. 1988. DNA supercoiling and the anaerobic growth phase regulation of tonB gene expression. J. Bacteriol. 170:2816–2826.PubMedGoogle Scholar
  11. Drlica, K. 1990. Bacterial topoisomerases and the control of DNA supercoiling. Trends in Genetics 6:433–437.PubMedCrossRefGoogle Scholar
  12. Drlica, K., E. Burgi, and A. Worcel. 1978. Association of the folded chromosome with the cell envelope of Escherichia coli: characterization of membrane-associated DNA. J. Bacteriol. 134:1108–1116.PubMedGoogle Scholar
  13. Drlica, K., S. H. Manes, and E. C. Engle. 1980. DNA gyrase on the bacterial chromosome: possibility of two levels of action. Proc. Natl. Acad. Sci. U.S.A. 77:6879–6883.PubMedCrossRefGoogle Scholar
  14. Drlica, K. and A. Worcel. 1975. Conformational transitions in the Escherichia coli chromosome: analysis by viscometry and sedimentation. J. Mol. Biol. 98:393–411.PubMedCrossRefGoogle Scholar
  15. Durrenberger, M., M.-A. Bjornsti, T. Uetz, J. Hobot, and E. Kellenberger. 1988. Intracellular location of the histone-like protein in Escherichia coli. J. Bacteriol. 170:4757–4768.PubMedGoogle Scholar
  16. Geliert, M., M. H. O’Dea, T. Itoh, and J.-I. Tomizawa. 1976a. Novobiocin and coumermycin inhibit DNA supercoiling catalyzed by DNA gyrase. Proc. Natl. Acad. Sci. U.S.A. 73:4474–4478.CrossRefGoogle Scholar
  17. Geliert, M., M. H. O’Dea, K. Mizuuchi, and H. Nash. 1976b. DNA gyrase: an enzyme that introduces superhelical turns into DNA. Proc. Natl. Acad. Sci. U.S.A. 73:3872–3876.CrossRefGoogle Scholar
  18. Higgins, C. F., C. J. Dorman, D. A. Stirling, L. Waddell, I. R. Booth, G. May, and E. Bremer. 1988. A physiological role for DNA supercoiling in the osmotic regulation of gene expression in S. typhimurium and E. coli. Cell 52:569–58PubMedCrossRefGoogle Scholar
  19. Hillyard, D. R., M. Edlund, K. Hughes, M. Marsh, and N. P. Higgins. 1990. Subunit-specific phenotypes of Salmonella typhimurium HU mutants. J. Bacteriol. 172:5402–5407.PubMedGoogle Scholar
  20. Hobot, J., W. Villiger, J. Escaig, M. Maeder, A. Ryter, and E. Kellenberger. 1985. Shape and fine structure of nucleoids observed on sections of ultrarapidly frozen and cryosubstituted bacteria. J. Bacteriol. 162:960–971.PubMedGoogle Scholar
  21. Hodges-Garcia, Y., P. Hagerman, and D. Pettijohn. 1989. DNA ring closure mediated by protein HU. J. Biol. Chem. 264:14621–14623.PubMedGoogle Scholar
  22. Hsieh, L.-S., R. M. Burger, and K. Drlica. 1991. Bacterial DNA supercoiling and [ATP]/ [ADP]: changes associated with a transition to anaerobic growth. J. Mol. Biol. 219:443–450.PubMedCrossRefGoogle Scholar
  23. Hsieh, L.-S., J. Rouviere-Yaniv, and K. Drlica. 1991. Bacterial DNA supercoiling and [ATP]/[ADP]: changes associated with salt shock. J. Bacteriol. 173:3914–3917.PubMedGoogle Scholar
  24. Huisman, O., M. Faelen, D. Girard, A. Jaffe, A. Toussaint, and J. Rouviere-Yaniv. 1989. Multiple defects in Escherichia coli mutants lacking HU protein. J. Bacteriol. 171:3704–3712.PubMedGoogle Scholar
  25. Hwang, D. and A. Kornberg. 1992. Opening of the replication origin of Escherichia coli DNA by DnaA protein with protein HU or IHF. J. Biol. Chem. 267:23083–23086.PubMedGoogle Scholar
  26. Imamoto, F. and Y. Kano. 1990. Physiological characterization of deletion mutations of the hupA and hupB genes. In The Bacterial Chromosome K. Drlica and M. Riley, eds. pp. 259–268. American Soc. for Microbiol. Washington, D.C.Google Scholar
  27. Jensen, P., L. Loman, B. Petra, C. van der Weijden, and H. Westerhoff. 1995. Energy buffering of DNA structure fails when Escherichia coli runs out of substrate. J. Bacteriol. 177:3420–3426.PubMedGoogle Scholar
  28. Johnson, R., M. Bruist, and M. Simon. 1986. Host protein requirements for in vitro site-specific DNA inversion. Cell 46:531–539.PubMedCrossRefGoogle Scholar
  29. Kato, J.-I., H. Suzuki, and H. Ikeda. 1992. Purification and characterization of DNA topoisomerase IV in Escherichia coli. J. Biol. Chem. 267:25676–25684.PubMedGoogle Scholar
  30. Kavenoff, R. and B. Bowen. 1976. Electron microscopy of membrane-free folded chromosomes from Escherichia coli. Chromosoma 59:89–101.PubMedCrossRefGoogle Scholar
  31. Kellenberger, E. 1990. Intracellular organization of the bacterial genome. In The Bacterial Chromosome K. Drlica and M. Riley, eds. pp. 173–186. ASM, Washington, DC.Google Scholar
  32. Kellenberger, E. 1991. Functional consequences of improved structural information on bacterial nucleoids. Res. Microbiol. 142:229–238.PubMedCrossRefGoogle Scholar
  33. Khodursky, A. B., E. L. Zechiedrich, and N. R. Cozzarelli. 1995. Topoisomerase IV is a target of quinolones in Escherichia coli. Proc. Nat. Acad. Sci. U.S.A. 92:11801–11805.CrossRefGoogle Scholar
  34. Liu, L. and J. Wang. 1987. Supercoiling of the DNA template during transcription. Proc. Natl. Acad. Sci. U.S.A. 84:7024–7027.PubMedCrossRefGoogle Scholar
  35. Malik, M., A. Bensaid, J. Rouviere-Yaniv, and K. Drlica. 1996. Histone-like protein HU and bacterial DNA topology: suppression of an HU deficiency by gyrase mutations. J. Mol. Biol. 256:66–76.PubMedCrossRefGoogle Scholar
  36. Marians, K. 1987. DNA gyrase-catalyzed decatenation of multiply linked DNA dimers. J. Biol. Chem. 262:10362–10368.PubMedGoogle Scholar
  37. Mason, D. and D. Powelson. 1956. Nuclear division as observed in live bacteria by a new technique. J. Bacteriol. 71:474–479.PubMedGoogle Scholar
  38. Menzel, R. and M. Geliert. 1983. Regulation of the genes for E. coli DNA gyrase: homeostatic control of DNA supercoiling. Cell 34:105–113.PubMedCrossRefGoogle Scholar
  39. Mulder, E., M. El’Bouhali, E. Pas, and C. L. Woldringh. 1990. The Escherichia coli minB mutation resembles gyrB in defective nucleoid segregation and decreased negative supercoiling in plasmids. Mol. Gen. Genet. 221:87–93.PubMedCrossRefGoogle Scholar
  40. Ogden, G., M. Pratt, and M. Schaechter. 1988. The replication origin of the Escherichia coli chromosome binds to cell membranes only when hemimethylated. Cell 54:127–135.PubMedCrossRefGoogle Scholar
  41. Peng, H. and K. Marians. 1993. Decatenation activity of topoisomerase IV during oriC and pBR322 DNA replication in vitro. Proc. Natl. Acad. Sci. U.S.A. 90:8571–8575.PubMedCrossRefGoogle Scholar
  42. Pettijohn, D. and R. Hecht. 1973. RNA molecules bound to the folded bacterial genome stabilize DNA folds and segregate domains of supercoiling. Cold Spring Harbor Symposium of Quantitative Biology 38:31–41.CrossRefGoogle Scholar
  43. Pruss, G., R. Franco, S. Chevalier, S. Manes, and K. Drlica. 1986. Effects of DNA gyrase inhibitors in Escherichia coli topoisomerase I mutants. J. Bacteriol. 168:276–282.PubMedGoogle Scholar
  44. Pruss, G. J. and K. Drlica. 1989. DNA supercoiling and prokaryotic transcription. Cell 56:521–523.PubMedCrossRefGoogle Scholar
  45. Pruss, G. J., S. H. Manes, and K. Drlica. 1982. Escherichia coli DNA topoisomerase I mutants: increased supercoiling is corrected by mutations near gyrase genes. Cell 31:35–42.PubMedCrossRefGoogle Scholar
  46. Rouviere-Yaniv, J., J.-E. Germond, and M. Yaniv. 1979. E. coli DNA binding protein HU forms nucleosome-like structure with circular double-stranded DNA. Cell 17:265–274.PubMedCrossRefGoogle Scholar
  47. Rouviere-Yaniv, J., E. Kiseleva, A. Bensaid, A. Almeida, and K. Drlica. 1992. Protein HU and bacterial DNA supercoiling. Prokaryotic Structure and Function. pp. 17–43. S. Mohan, C. Dow and J. Cole, eds. Cambridge University Press.Google Scholar
  48. Ryter, A. and A. Chang. 1975. Localization of transcribing genes in the bacterial cell by means of high resolution autoradiography. J. Mol. Biol. 98:797–810.PubMedCrossRefGoogle Scholar
  49. Schaechter, M., J. Williamson, J. Hood, and A. Koch. 1962. Growth, cell, and nuclear divisions in some bacteria. J. Gen. Microbiol. 29:421–434.PubMedGoogle Scholar
  50. Shellman, V. and D. Pettijohn. 1991. Introduction of proteins into living bacterial cells: distribution of labeled HU protein in Escherichia coli. J. Bacteriol. 173:3047–3059.PubMedGoogle Scholar
  51. Sinden, R. R., J. O. Carlson, and D. E. Pettijohn. 1980. Torsional tension in the DNA double helix measured with trimethylpsoralen in living E. coli cells. Cell 21:773–783.PubMedCrossRefGoogle Scholar
  52. Sinden, R. R. and D. E. Pettijohn. 1981. Chromosomes in living Escherichia coli cells are segregated into domains of supercoiling. Proc. Natl. Acad. Sci. USA 78:224–228.PubMedCrossRefGoogle Scholar
  53. Snyder, M. and K. Drlica. 1979. DNA gyrase on the bacterial chromosome: DNA cleavage induced by oxolinic acid. J. Mol. Biol. 131:287–302.PubMedCrossRefGoogle Scholar
  54. Steck, T. R. and K. Drlica. 1984. Bacterial chromosome segregation: evidence for DNA gyrase involvement in decatenation. Cell 36:1081–1088.PubMedCrossRefGoogle Scholar
  55. Stonington, O.G. and D.E. Pettijohn. 1971. The folded genome of Escherichia coli isolated in a protein-DNA-RNA complex. Proc. Natl. Acad. Sci. U.S.A. 68:6–9.PubMedCrossRefGoogle Scholar
  56. Thornton, M., M. Armitage, A. Maxwell, B. Dosanjh, A. Howells, V. Norris, and D. Sigee. 1994. Immunogold localization of GyrA and GyrB proteins in Escherichia coli. Microbiology 140:2371–2382.PubMedCrossRefGoogle Scholar
  57. Tse-Dinh, Y.-C. 1985. Regulation of the Escherichia coli DNA topoisomerase I gene by DNA supercoiling. Nucl. Acids Res. 13:4751–4763.PubMedCrossRefGoogle Scholar
  58. Tse-Dinh, Y.-C. and R. Beran. 1988. Multiple promoters for transcription of the E. coli DNA topoisomerase I gene and their regulation by DNA supercoiling. J. Mol. Biol. 202:735–742.PubMedCrossRefGoogle Scholar
  59. Valkenburg, J.A.C., C. L. Woldringh, G. J. Brakenhoff, T. M. Van der Voort, and N. Nanninga. 1985. Confocal scanning light microscopy of the Escherichia coli nucleoid: comparison with phase-contrast and electron microscope images. J. Bacteriol. 161:478–483.PubMedGoogle Scholar
  60. Van Helvoort, J.M.L.M. and C. L. Woldringh. 1994. Nucleoid partitioning in Escherichia coli during steady-state growth and upon recovery from chloramphenicol treatment. Mol. Microbiol. 13:577–583.PubMedCrossRefGoogle Scholar
  61. Wada, M., K. Kutsukake, T. Komano, F. Imamoto, and Y. Kano. 1989. Participation of the hup gene product in specific DNA inversion in Escherichia coli. Gene 76:345–352.PubMedCrossRefGoogle Scholar
  62. Wang, J. C. 1971. Interaction between DNA and an Escherichia coli protein. J. Mol. Biol. 55:523–533.PubMedCrossRefGoogle Scholar
  63. Westerhoff, H., M. Aon, K. van Dam, S. Cortassa, D. Kahn, and M. van Workum. 1990. Dynamical and hierarchical coupling. Biochim. Biophy. Acta 1018:142–146.CrossRefGoogle Scholar
  64. Westerhoff, H., M. O’Dea, A. Maxwell, and M. Geliert. 1988. DNA supercoiling by DNA gyrase. A static head analysis. Cell Biophysics 12:157–181.PubMedGoogle Scholar
  65. Woldringh, C. L. 1973. Effects of cations on the organisation of the nucleoplasm in Escherichia coli prefixed with osmium tetroxide or glutaraldehyde. Cytobiologie 8:97–111.Google Scholar
  66. Woldringh, C. L., P. R. Jensen, and H. V. Westerhoff. 1995. Structure and partitioning of bacterial DNA: determined by a balance of compaction and expansion forces? FEMS Microbiol. Letters 131:235–242.CrossRefGoogle Scholar
  67. Woldringh, C. L., M. A. de Jong, W. van den Berg, and L. Koppes. 1977. Morphological analysis of the division cycle of two Escherichia coli substrains during slow growth. J. Bacteriol. 131:270–279.PubMedGoogle Scholar
  68. Woldringh, C. L., A. Zaritsky, and N. B. Grover. 1994. Nucleoid partitioning and the division plane in Escherichia coli. J. Bacteriol. 176:6030–6038.PubMedGoogle Scholar
  69. Worcel, A. and E. Burgi. 1972. On the structure of the folded chromosome of Escherichia coli. J. Mol. Biol. 71:127–147.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Karl Drlica
  • Conrad L. Woldringh

There are no affiliations available

Personalised recommendations