Skip to main content

The Dynamic Genome of Rhizobium

  • Chapter
Bacterial Genomes

Abstract

A major, indeed the predominant, biological feature of Rhizobium spp. is their ability to establish nitrogen-fixing symbioses with leguminous plants. The understanding of the molecular basis for interaction with plants has been the major thrust for molecular genetics studies of these bacteria. This research has culminated with the identification of a wealth of bacterial genes involved in the symbiotic process, and some of their biochemical and developmental functions (reviewed by Fischer, 1994 and Schultze et al., 1994).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bergman, K., E. Nulty, and L. Su. 1991. Mutations in the two flagellin genes of Rhizobium meliloti. J. Bacteriol. 173:3716–3723.

    PubMed  CAS  Google Scholar 

  • Brom, S., A. García de los Santos, M. L. Girard, G. Dãvila, R. Palacios, and D. Romero. 1991. High-frequency rearrangements in Rhizobium leguminosarum bv. phaseoli plasmids. J. Bacteriol. 173:1344–1346.

    PubMed  CAS  Google Scholar 

  • Brom, S., A. García de los Santos, T. Stepkowski, M. Flores, G. Dãvila, D. Romero, and R. Palacios. 1992. Different plasmids of Rhizobium leguminosarum bv. phaseoli are required for optimal symbiotic performance. J. Bacteriol. 174:5183–5189.

    PubMed  CAS  Google Scholar 

  • David, M., O. Domergue, P. Pognonec, and D. Kahn. 1987. Transcription patterns of Rhizobium meliloti symbiotic plasmid pSym: Identification of nifA-independent fix genes. J. Bacteriol. 169:2239–2244.

    PubMed  CAS  Google Scholar 

  • Djordjevic, M. A., W. Zurkowski, and B. G. Rolfe. 1982. Plasmids and stability of symbiotic properties of Rhizobium trifolii. J. Bacteriol. 15:560–568.

    Google Scholar 

  • Fischer, H-H. 1994. Genetic regulation of nitrogen fixation in Rhizobia. Microbiol. Rev. 58:352–386.

    PubMed  CAS  Google Scholar 

  • Fischer, H-M., M. Babst, T. Kaspar, G. Acuna, F. Arigoni, and H. Hennecke. 1993. One member of a groESL-like chaperonin multigene family in Bradyrhizobium japonicum is coregulated with symbiotic nitrogen fixation genes. EMBO J. 12:2901–2912.

    PubMed  CAS  Google Scholar 

  • Flores, M., S. Brom, T. Stepkowski, M. L. Girard, G. Dãvila, D. Romero, and R. Palacios. 1993. Gene amplification in Rhizobium: identification and in vivo cloning of discrete amplifiable DNA regions (amplicons) from Rhizobium leguminosarum bv. phaseoli. Proc. Natl. Acad. Sci. USA 90:4932–4936.

    Article  PubMed  CAS  Google Scholar 

  • Flores, M., V. Gonzãlez, S. Brom, E. Martínez, D. Piñero, D. Romero, G. Dãvila and R. Palacios. 1987. Reiterated DNA sequences in Rhizobium and Agrobacterium spp. J. Bacteriol. 169:5782–57

    PubMed  CAS  Google Scholar 

  • Flores, M., V. Gonzãlez, M. A. Pardo, A. Leija, E. Martínez, D. Romero, D. Piöero, G. Dívila, and R. Palacios. 1988. Genomic instability in Rhizobium phaseoli. J. Bacteriol. 170:1191–1196.

    PubMed  CAS  Google Scholar 

  • Girard, M. L., M. Flores, S. Brom, D. Romero, R. Palacios, and G. Dãvila. 1991. Structural complexity of the symbiotic plasmid of Rhizobium leguminosarum bv. phaseoli. J. Bacteriol. 173:2411–2419.

    PubMed  CAS  Google Scholar 

  • Hahn, M., and H. Hennecke. 1987. Mapping of a Bradyrhizobium japonicum DNA region carrying genes for symbiosis and an asymmetric accumulation of reiterated sequences. Appl. Environ. Microbiol. 53:2247–2252.

    PubMed  CAS  Google Scholar 

  • Hopwood, D. A., and T. Kieser. 1990. The Streptomyces genome. In The Bacterial chromosome. K. Drlica and M. Riley, eds. pp. 147–162. American Society for Microbiology, Washington, D.C.

    Google Scholar 

  • Hynes, M. F., and N. F. McGregor. 1990. Two plasmids other than the nodulation plasmid are necessary for formation of nitrogen fixing nodules by Rhizobium leguminosarum. Mol. Microbiol. 4:567–574.

    Article  PubMed  CAS  Google Scholar 

  • Kündig, C., H. Hennecke and M. Göttfert. 1993. Correlated physical and genetic map of the Bradyrhizobium japonicum 110 genome. J. Bacteriol. 175:613–622.

    PubMed  Google Scholar 

  • Marie, C., M. A. Barny and J. A. Downie. 1992. Rhizobium leguminosarum has two glucosamine synthetases, GlmS and NodM, required for nodulation and development of nitrogen-fixing nodules. Mol. Microbiol. 6:843–851.

    Article  PubMed  CAS  Google Scholar 

  • Margolin, W., and S. Long. 1994. Rhizobium meliloti contains a novel second homolog of the cell division gene ftsZ. J. Bacteriol. 176:2033–2043.

    PubMed  CAS  Google Scholar 

  • Martínez, E., D. Romero and R. Palacios. 1990. The Rhizobium genome. Crit. Revs. in Plant Sci. 9:59–93.

    Article  Google Scholar 

  • Naas, T., M. Blot, W. M. Fitch and W. Arber. 1994. Insertion sequence-related genetic variation in resting Escherichia coli K-12. Genetics 136:721–730.

    PubMed  CAS  Google Scholar 

  • Pardo, M. A., J. Lagúnez, J. Miranda, and E. Martínez. 1994. Nodulating ability of Rhizobium tropici is conditioned by a plasmid-encoded citrate synthase. Mol. Microbiol. 11:315–321.

    Article  PubMed  CAS  Google Scholar 

  • Quinto, C., H. de la Vega, M. Flores, J. Leemans, M. A. Cevallos, M. A. Pardo, R. Azpiroz, M. L. Girard, E. Calva, and R. Palacios. 1985. Nitrogenase reductase: a functional multigene family in Rhizobium phaseoli. Proc. Natl. Acad. Sci. USA 82:1170–1174.

    Article  PubMed  CAS  Google Scholar 

  • Romero, D., S. Brom, J. Martínez-Salazar, M. L. Girard, R. Palacios and G. Dávila. 1991. Amplification and deletion of a nod-nif region in the symbiotic plasmid of Rhizobium phaseoli. J. Bacteriol. 173:2435–2441.

    PubMed  CAS  Google Scholar 

  • Romero, D., J. Martínez-Salazar, L. Girard, S. Brom, G. Dávila, R. Palacios, M. Flores, and C. Rodríguez. 1995. Discrete Amplifiable Regions (Amplicons) in the Symbiotic Plasmid of Rhizobium etli CFN42. J. Bacteriol. 177:973–980.

    PubMed  CAS  Google Scholar 

  • Romero, D., P. W. Singleton, L. Segovia, E. Morett, B. B. Bohlool, R. Palacios, and G. Dávila. 1988. Effect of naturally occurring nif reiterations on symbiotic effectiveness in Rhizobium phaseoli. Appl. Environ. Microbiol. 54:848–850.

    PubMed  Google Scholar 

  • Sanjuan, J., S. Luka, and G. Stacey. 1993. Genetic maps of Rhizobium and Bradyrhizobium species. In Genetic Maps, S. O’Brien, ed. pp. 2136–2145. Cold Spring Harbor Laboratory Press, New York, N.Y.

    Google Scholar 

  • Sapienza, C., and W. F. Doolittle. 1982. Unusual physical organization of the Halobacterium genome. Nature 295:384–389.

    Article  PubMed  CAS  Google Scholar 

  • Sapienza, C., M. R. Rose, and W. F. Doolittle. 1982. High-frequency genomic rearrangements involving archaebacterial repeat sequence elements. Nature 299:182–185.

    Article  PubMed  CAS  Google Scholar 

  • Schultze, M., E. Kondorosi, P. Ratet, M. Buiré, and A. Kondorosi. 1994. Cell and molecular biology of Rhizobium-plant interactions. Int. Rev. Cytol. 156:1–75.

    Article  CAS  Google Scholar 

  • Schwedock, J. and S. Long. 1992. Rhizobium meliloti genes involved in sulfate activation: the two copies of nodPQ and a new locus, saa. Genetics 132:899–909.

    PubMed  CAS  Google Scholar 

  • Selbitschka, W., and W. Lotz. 1991. Instability of cryptic plasmids affects the symbiotic effectivity of Rhizobium leguminosarum bv. viceae strains. Mol. Plant-Microbe Interact. 4:608–618.

    Article  CAS  Google Scholar 

  • Sonti, R. V., and J. R. Roth. 1989. Role of gene duplications in the adaptation of Salmonella typhimurium to growth on limiting carbon sources. Genetics 123:19–28.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Romero, D., Davila, G., Palacios, R. (1998). The Dynamic Genome of Rhizobium . In: de Bruijn, F.J., Lupski, J.R., Weinstock, G.M. (eds) Bacterial Genomes. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6369-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6369-3_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7925-6

  • Online ISBN: 978-1-4615-6369-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics