Conjugative Transposons

  • Don B. Clewell

Abstract

Conjugative transposons are able to move from one bacterial cell to another by a process requiring cell-to-cell contact. Such elements have been found in many bacterial genera but are particularly common among the Gram-positive streptococci and enterococci. They move via an excision/insertion process that involves a non-replicative circular DNA intermediate possessing plasmid-like conjugative properties. Some exhibit a relatively low level of target-site specificity, whereas others can be very specific. The transposons commonly carry antibiotic resistance determinants and, at least in some species (e.g. Streptococcus pneumoniae and Streptococcus pyogenes), are probably more responsible for the dissemination of these genes than plasmids. Anaerobic, Gram-negative Bacteroides strains are also known to carry non-plasmid resistance elements, and certain tetracycline-resistance transposons in this group exhibit drug-inducible transfer. Some strains of lactococci carry conjugative transposons with determinants for nisin production and sucrose metabolism. For recent reviews of these elements see Clewell and Flannagan (1993), Clewell, Flannagan, and Jaworski (1995), Scott and Churchward (1995), and Salyers et al. (1995).

Keywords

Resistance Determinant Conjugative Transfer Conjugative Plasmid Nisin Production Target Core 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ayoubi, P., A. O. Kilic, and M. N. Vijayakumar. 1991. Tn5253, the pneumococcal Ω(cat tet) BM6001 element, is a composite structure of two conjugative transposons Tn5251 and Tn5252. J. Bacteriol. 173:1617–1622.PubMedGoogle Scholar
  2. Bedzyk, L. A., N. B. Shoemaker, K. E. Young, and A. A. Salyers. 1992. Insertion and excision of Bacterioides conjugative chromosomal elements. J. Bacteriol. 174:166–172.PubMedGoogle Scholar
  3. Boyd, A. C., J. A. K. Archer, and D. J. Sherratt. 1989. Characterization of the ColE1 mobilization region and protein products. Mol. Gen. Genet. 217:488–498.PubMedCrossRefGoogle Scholar
  4. Caparon, M. G., and J. R. Scott. 1989. Excision and insertion of the conjugative transposon Tn916 involves a novel recombination mechanism. Cell 59:1027–1034.PubMedCrossRefGoogle Scholar
  5. Clewell, D. B., and S. E. Flannagan. 1993. The conjugative transposons of Gram positive bacteria, in Bacterial Conjugation, D. B. Clewell, ed. pp. 369–393. Plenum Press, New York.Google Scholar
  6. Clewell, D. B., S. E. Flannagan, Y. Ike, J. M. Jones, and C. Gawron-Burke. 1988. Sequence analysis of termini of conjugative transposon Tn916. J. Bacteriol. 170:3046–3052.PubMedGoogle Scholar
  7. Clewell, D. B., S. E. Flannagan, and D. D. Jaworski. 1995. Unconstrained bacterial promis-cuity: the Tn916-Tn1545 family of conjugative transposons. Trends in Microbiology 3:229–236.PubMedCrossRefGoogle Scholar
  8. Clewell, D. B., S. E. Flannagan, L. A. Zitzow, Y. A. Su, P. He, E. Senghas, and K. E. Weaver. 1991. Properties of conjugative transposon Tn916, in, Genetics and Molecular Biology of Streptococci, Lactococci, and Enterococci. G. M. Dunny, P. P. Cleary, and L. L. McKay, eds. pp. 39–44. Washington, D.C., Am. Soc. Microbiol.Google Scholar
  9. Clewell, D. B., D. D. Jaworski, S. E. Flannagan, L. A. Zitzow, and Y. A. Su. 1995. The conjugative transposon Tn916 of Enterococcus faecalis: structural analysis. In, Genetics of Streptococci, Enterococci and Lactococci, J. J. Ferretti, M. S. Gilmore, and T. R. Klaenhammer, eds. pp. 11–17. Dev. Biol. Stand., Basel, Karger, Vol. 85.Google Scholar
  10. Courvalin, P. and C. Carlier. 1986. Transposable multiple antibiotic resistance in Streptococcus pneumoniae. Mol. Gen. Genet. 205:291–297.PubMedCrossRefGoogle Scholar
  11. Franke, A. E., and D. B. Clewell. 1981. Evidence for a chromosome-borne resistance transposon (Tn915) in Streptococcus faecalis that is capable of “conjugal” transfer in the absence of a conjugative plasmid. J. Bacteriol. 145:494–502.PubMedGoogle Scholar
  12. Flannagan, S. E., and D. B. Clewell. 1991. Conjugative transfer of Tn916 in Enterococcus faecalis: trans activation of homologous transposons. J. Bacteriol. 173:7136–7141.PubMedGoogle Scholar
  13. Flannagan, S. E., L. A. Zitzow, Y. A. Su, and D. B. Clewell. 1994. Nucleotide sequence of the 18-kb conjugative transposon Tn916 from Enterococcus faecalis. Plasmid 32:350–354.PubMedCrossRefGoogle Scholar
  14. Gawron-Burke, C., and D. B. Clewell. 1982. A transposon in Streptococcus faecalis with fertility properties. Nature 300:281–284.PubMedCrossRefGoogle Scholar
  15. Gawron-Burke, C., and D. B. Clewell. 1984. Regeneration of insertionally inactivated streptococcal DNA fragments after excision of transposon Tn916 in Escherichia coli: strategy for targeting and cloning of genes from gram-positive bacteria. J. Bacteriol. 159:214–221.PubMedGoogle Scholar
  16. Horaud, T., G. de Cespedes, D. Clermont, F. David, and F. Delbos. 1991. Variability of chromosomal genetic elements in streptococci, in, Genetics and Molecular Biology of Streptococci, Lactococci, and Enterococci. pp. 16–20. G. M. Dunny, P. P. Cleary, and L. L. McKay, eds. Am. Soc. Microbiol., Washington, D.C.Google Scholar
  17. Jaworski, D. D., and D. B. Clewell. 1994. Evidence that coupling sequences play a frequency-determining role in conjugative transposition of Tn916 in Enterococcus faecalis. J. Bacteriol. 176:3328–3335.PubMedGoogle Scholar
  18. Jaworski, D. D., and D. B. Clewell. 1995. A functional origin of transfer (oriT) on the conjugative transposon Tn916. J. Bacteriol. 177:6644–6651.PubMedGoogle Scholar
  19. Lu, F., and G. Churchward. 1994. Conjugative transposition: Tn916 integrase contains two independent DNA binding domains that recognize different DNA sequences. EMBO J. 13:1541–1548.PubMedGoogle Scholar
  20. Lu, F., and G. Churchward. 1995. Tn916 target DNA sequences bind the C-terminal domain of integrase protein with different affinities that correlate with transposon insertion frequency. J. Bacteriol. 177:1938–1946.PubMedGoogle Scholar
  21. Murphy, C. G., and M. H. Malamy. 1993. Characterization of a “mobilization cassette” in transposon Tn4399 from Bacterioides fragilis. J. Bacteriol. 175:5814–5823.PubMedGoogle Scholar
  22. Murphy, C. G., and M. H. Malamy. 1995. Requirements for strand-and site-specific cleavage within the oriT region of Tn4399, a mobilizing transposon from Bacteroides fragilis. J. Bacteriol. 177:3158–3165.PubMedGoogle Scholar
  23. Poyart-Salmeron, C., P. Trieu-Cuot, C. Carlier, and P. Courvalin. 1989. Molecular characterization of two proteins involved in the excision of the conjugative transposon Tn1545; homologies with other site-specific recombinases. EMBO J. 8:2425–2433.PubMedGoogle Scholar
  24. Poyart-Salmeron, C., P. Trieu-Cuot, C. Carlier, and P. Courvalin. 1990. The integration-excision system of the conjugative transposon Tn1545 is structurally and functionally related to those of lambdoid phages. Mol. Microbiol. 4:1513–1521.PubMedCrossRefGoogle Scholar
  25. Salyers, A. A., and N. B. Shoemaker. 1992. Chromosomal gene transfer elements of the Bacteroides group. Eur. J. Clin. Microbiol. Infect. Dis. 11:1032–1038.PubMedCrossRefGoogle Scholar
  26. Salyers, A. A., N. B. Shoemaker, A. M. Stevens, and L. Li. 1995. Conjugative transposons: an unusual and diverse set of integrated gene transfer elements. Microbiol. Rev. 59:579–590.PubMedGoogle Scholar
  27. Scott, J. R., and G. G. Churchward. 1995. Conjugative transposition. Annu. Rev. Biochem. 49:367–397.Google Scholar
  28. Scott, J. R., F. Bringel, D. Marra, G. Van Alstine, and C. K. Rudy. 1994. Conjugative transposition of Tn916: preferred targets and evidence for conjugative transfer of a single strand and for a double-stranded circular intermediate. Mol. Microbiol. 11:1099–1108.PubMedCrossRefGoogle Scholar
  29. Scott, J. R., P. A. Kirchman, and M. G. Caparon. 1988. An intermediate in the transposition of the conjugative transposon Tn916. Proc. Natl. Acad. Sci. USA 85:4809–4813.PubMedCrossRefGoogle Scholar
  30. Senghas, E., J. M. Jones, M. Yamamoto, C. Gawron-Burke, and D. B. Clewell. 1988. Genetic organization of the bacterial conjugative transposon. Tn916. J. Bacteriol. 170:245–249.PubMedGoogle Scholar
  31. Shoemaker, N. B., G. Wang, A. M. Stevens, and A. A. Salyers. 1993. Excision, transfer, and integration of NBU1, a mobilizable site-selective insertion element. J. Bacteriol. 175:6578–6587.PubMedGoogle Scholar
  32. Smith, C. J., and A. C. Parker. 1993. Identification of a circular intermediate in the transfer and transposition of Tn4555, a mobilizable transposon from Bacteroides species. J. Bacteriol. 175:2682–2691.PubMedGoogle Scholar
  33. Speer, B. S., N. B. Shoemaker, and A. A. Salyers. 1992. Bacterial resistance to tetracycline: mechanisms, transfer, and clinical significance. Clin. Microbiol. Rev. 5:387–399.PubMedGoogle Scholar
  34. Stevens, A. M., J. M. Sanders, N. B. Shoemaker, and A. A. Salyers. 1992. Genes involved in production of plasmidlike forms by a Bacteroides conjugal chromosomal element share amino acid homology with two-component regulatory systems. J. Bacteriol. 174:2935–2942.PubMedGoogle Scholar
  35. Su, Y. A., and D. B. Clewell. 1993. Characterization of the left 4 kb of conjugative transposon Tn916: determinants involved in excision. Plasmid 30:234–250.PubMedCrossRefGoogle Scholar
  36. Trieu-Cuot, P., C. Poyart-Salmeron, C. Carlier, and P. Courvalin. 1991. Molecular dissection of the transposition mechanism of conjugative transposons from gram-positive cocci, In Genetics and Molecular Biology of Streptococci, Lactococci, and Enterococci pp. 21–27. G. M. Dunny, P. P. Cleary, and L. L. McKay, eds. Am. Soc. Microbiol., Washington, D.C.Google Scholar
  37. Trieu-Cuot, P., C. Poyart-Salmeron, C. Carlier, and P. Courvalin. 1993. Sequence requirements for target activity in site-specific recombination mediated by the Int protein of transposon Tn1545. Mol. Microbiol. 8:179–185.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Don B. Clewell

There are no affiliations available

Personalised recommendations