Segregation of the Bacterial Chromosome

  • Robert A. Britton
  • James R. Lupski


Bacteria must successfully complete several processes of the cell cycle to ensure that a single cell will become two viable daughter cells. These processes include: 1) replication of the chromosome, 2) segregation of the chromosomes to opposite poles, and 3) cell division. Each of these discontinuous processes must be coordinated, but how this is achieved is poorly understood (see also Chapters 7 and 9).


Chromosome Segregation Bacterial Chromosome Daughter Chromosome Sister Chromosome GATC Site 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, D. E., E. M. Shektman, E. L. Zechiedrich, M. B. Schmid, and N. R. Cozzarelli. 1992. The role of topoisomerase IV in partitioning bacterial replicons and the structure of catenated intermediates in DNA replication. Cell 71:277–288.PubMedCrossRefGoogle Scholar
  2. Blakely, G., S. Colloms, G. May, M. Burke, and D. Sherratt. 1991. Escherichia coli XerC recombinase is required for chromosomal segregation at cell division. New Biol. 3:789–798.PubMedGoogle Scholar
  3. Blakely, G., G. May, R. McCulloch, L. K. Arciszewska, M. Burke, S. T. Lovett, and D. J. Sherratt. 1993. Two related recombinases are required for site-specific recombination at dif and cer in E. coli K-12. Cell 72:351–361.CrossRefGoogle Scholar
  4. Donachie, W. D. and K. J. Begg. 1989. Chromosome partition in Escherichia coli requires post-replication protein synthesis. J. Bacteriol. 171:5405–5409.PubMedGoogle Scholar
  5. Grompe, M., J. Versalovic, T. Koeuth, and J. R. Lupski. 1991. Mutations in the Escherichia coli dnaG gene suggest coupling between DNA replication and chromosome partitioning. J. Bacteriol. 173:1268–1278.PubMedGoogle Scholar
  6. Hiraga, S. 1992. Chromosome and plasmid partition in Escherichia coli. Annu. Rev. Biochem. 61:283–306.PubMedCrossRefGoogle Scholar
  7. Hiraga, S., H. Niki, R. Imamura, T. Ogura, K. Yamanaka, J. Feng, B. Ezaki, and A. Jaffe. 1991. Mutants defective in chromosome partitioning in E. coli. Res. Microbiol. 142:189–194.PubMedCrossRefGoogle Scholar
  8. Hiraga, S., H. Niki, T. Ogura, C. Ichinose, H. Mori, B. Ezaki, and A. Jaffe. 1989. Chromosome partitioning in Escherichia coli: novel mutants producing anucleate cells. J. Bacteriol. 171:1496–1505.PubMedGoogle Scholar
  9. Hiraga, S., T. Ogura, H. Niki, C. Ichinose, and H. Mori. 1990. Positioning of replicated chromosomes in Escherichia coli. J. Bacteriol. 172:31–39.PubMedGoogle Scholar
  10. Hirota, Y., M. Ricard, and B. Shapiro. 1971. The use of thermosensitive mutants of E. coli in the analysis of cell division. Biomembranes 2:13–31.CrossRefGoogle Scholar
  11. Hirota, Y., A. Ryter, and F. Jacob. 1968. Thermosensitive mutants of E. coli affected in the processes of DNA synthesis and cellular division. Cold Spring Harbor Symp. Quan. Biol. 33:677–693.CrossRefGoogle Scholar
  12. Hussain, K., E. J. Elliot, and G. P. C. Salmond. 1987. The ParD- mutant of Escherichia coli also carries a gyrAam mutation. The complete sequence of gyrA. Mol. Microbiol. 1:259–273.PubMedCrossRefGoogle Scholar
  13. Jacob, F., S. Brenner, and F. Cuzin. 1963. On the regulation of DNA replication in bacteria. Cold Spring Harbor Symp. Quan. Biol. 28:329–348.CrossRefGoogle Scholar
  14. Kato, J., Y. Nishimura, R. Imamura, H. Niki, S. Hiraga, and H. Suzuki. 1990. New topoisomerase essential for chromosome segregation in E. coli. Cell 63:393–404.PubMedCrossRefGoogle Scholar
  15. Kato, J., Y. Nishimura, and H. Suzuki. 1989. Escherichia coli parA is an allele of the gyrB gene. Mol. Gen. Genet. 217:178–181.PubMedCrossRefGoogle Scholar
  16. Kato, J., Y. Nishimura, M. Yamada, H. Suzuki, and Y. Hirota. 1988. Gene organization in the region containing a new gene involved in chromosome partition in Escherichia coli. J. Bacteriol. 170:3967–3977.PubMedGoogle Scholar
  17. Kuempel, P. L., J. M. Henson, L. Dircks, M. Tecklenberg, and D. F. Lim. 1991. dif a recA-independent recombination site in the terminus region of the chromosome of Escherichia coli. New Biol. 3:799–811.PubMedGoogle Scholar
  18. Lobner-Olesen, A., F. G. Hansen, K. V. Rasmussen, B. Martin, and P. L. Kuempel. 1994. The initiation cascade for chromosome replication in wild-type and Dam methyltransferase deficient Escherichia coli cells. EMBO J. 13:1856–1862.PubMedGoogle Scholar
  19. Logner-Olesen, A., and P. L. Kuempel. 1992. Chromosome partitioning in Escherichia coli. J. Bacteriol. 174:7883–7889.Google Scholar
  20. Luttinger, A. L. 1995. The twisted ‘life’ of DNA in the cell: bacterial topoisomerases. Mol. Microbiol. 15:601–606.PubMedCrossRefGoogle Scholar
  21. Luttinger, A. L., A. L. Springer, and M. B. Schmid. 1991. A cluster of genes that affects nucleoid segregation in Salmonella typhimurium. New Biol. 3:687–697.PubMedGoogle Scholar
  22. Niki, H., R. Imamura, M. Kitaoka, K. Yamanaka, T. Ogura, and S. Hiraga. 1992. E. coli MukB protein involved in chromosome partition forms a homodimer with a rod-and-hinge structure having DNA binding and ATP/GTP binding activities. EMBO J. 11:5101–5109.PubMedGoogle Scholar
  23. Niki, H., A. Jaffe, R. Imamura, T. Ogura, and S. Hiraga. 1991. The new gene mukB codes for a 177 kd protein with coiled-coil domains involved in chromosome partitioning of E. coli. EMBO J. 10:183–193.PubMedGoogle Scholar
  24. Norris, V., T. Alliotte, A. Jaffe, and R. D’ari. 1986. DNA replication termination in Escherichia coli parB (a dnaG allele) and parA and gyrB mutants affected in DNA distribution. J. Bacteriol. 168:494–504.PubMedGoogle Scholar
  25. Peng, H. and K. J. Marians. 1993. Decatenation activity of topoisomerase IV during oriC and pBR322 DNA replication in vitro. Proc. Natl. Acad. Sci. USA 90:8571–8575.PubMedCrossRefGoogle Scholar
  26. Peng, H. and K. J. Marians. 1995. The interaction of Escherichia coli topoisomerase IV with DNA. J. Biol. Chem. 270:25286–25290.PubMedCrossRefGoogle Scholar
  27. Rothfield, L. 1994. Bacterial chromosome segregation. Cell 77:963–966.PubMedCrossRefGoogle Scholar
  28. Schmid, M. 1990. A locus affecting nucleoid segregation in Salmonella typhimurium. J. Bacteriol. 172:5416–5424.PubMedGoogle Scholar
  29. Schmid, M. B. and U. von Friesleben. 1996. Nucleoid segregation. In Escherichia coli and Salmonella. Cellular and molecular biology, Second edition, F. C. Neidhardt, R. Curtiss III, J. L. Ingraham, E. C. C. Lin, K. B. Low, B. Magasanik, W. S. Reznikoff, M. Riley, M. Schaechter, and H. E. Umbarger, eds., pp. 1662–1669. ASM Press, Washington, D.C.Google Scholar
  30. Schmid, M. B. and J. A. Sawitzke. 1993. Multiple bacterial topoisomerases: specialization or redundancy? Bioessays 15:445–449.PubMedCrossRefGoogle Scholar
  31. Skarstad, K. and E. Boye. 1993. Degradation of individual chromosomes in recA mutants of Escherichia coli. J. Bacteriol. 175:5505–5509.PubMedGoogle Scholar
  32. Steck, T. R. and K. Drlica. 1984. Bacterial chromosome segregation: evidence for DNA gyrase involvement in decatenation. Cell 36:1081–1088.PubMedCrossRefGoogle Scholar
  33. van Helvoort, J. M. L. M. and C. L. Woldringh. 1994. Nucleoid partitioning in Escherichia coli during steady-state and upon recovery from chloramphenicol treatment. Mol. Microbiol. 13:577–583.PubMedCrossRefGoogle Scholar
  34. Versalovic, J. 1994. Evolution of the macromolecular synthesis operon and analysis of bacterial primase. Ph.D. Thesis. Baylor College of Medicine.Google Scholar
  35. Versalovic, J., and Lupski, J. R. (1997) Missense mutations in the 3′ end of dna6 gene do not destroy primase activity but confer the chromosome segregation defective (par) phenotype. Microbiology 143:585–594.PubMedCrossRefGoogle Scholar
  36. Vinella, D., A. Jaffe, R. D’Ari, M. Kohiyama, and P. Hughes. 1992. Chromosome partitioning in Escherichia coli in the absence of Dam-directed methylation. J. Bacteriol. 174:2388–2390.PubMedGoogle Scholar
  37. Yamanaka, K., T. Ogura, H. Niki, and S. Hiraga. 1996. Identification of two new genes, mukE and mukF, involved in chromosome partitioning in Escherichia col. Mol. Gen. Genet. 250:241–251.PubMedGoogle Scholar
  38. Zechiedrich, E. L. and N. R. Cozzarelli. 1995. Roles of topoisomerase IV and DNA gyrase in DNA unlinking during replication in Escherichia coli. Genes Dev. 9:2859–2869.PubMedCrossRefGoogle Scholar
  39. Zyskind, J. W., A. L. Svitil, W. B. Stine, M. C. Biery, and D.W. Smith. 1992. RecA protein of Escherichia coli and chromosome partitioning. Mol. Microbiol. 6:2525–2537.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Robert A. Britton
  • James R. Lupski

There are no affiliations available

Personalised recommendations