Skip to main content

Segregation of the Bacterial Chromosome

  • Chapter
Bacterial Genomes
  • 941 Accesses

Abstract

Bacteria must successfully complete several processes of the cell cycle to ensure that a single cell will become two viable daughter cells. These processes include: 1) replication of the chromosome, 2) segregation of the chromosomes to opposite poles, and 3) cell division. Each of these discontinuous processes must be coordinated, but how this is achieved is poorly understood (see also Chapters 7 and 9).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, D. E., E. M. Shektman, E. L. Zechiedrich, M. B. Schmid, and N. R. Cozzarelli. 1992. The role of topoisomerase IV in partitioning bacterial replicons and the structure of catenated intermediates in DNA replication. Cell 71:277–288.

    Article  PubMed  CAS  Google Scholar 

  • Blakely, G., S. Colloms, G. May, M. Burke, and D. Sherratt. 1991. Escherichia coli XerC recombinase is required for chromosomal segregation at cell division. New Biol. 3:789–798.

    PubMed  CAS  Google Scholar 

  • Blakely, G., G. May, R. McCulloch, L. K. Arciszewska, M. Burke, S. T. Lovett, and D. J. Sherratt. 1993. Two related recombinases are required for site-specific recombination at dif and cer in E. coli K-12. Cell 72:351–361.

    Article  Google Scholar 

  • Donachie, W. D. and K. J. Begg. 1989. Chromosome partition in Escherichia coli requires post-replication protein synthesis. J. Bacteriol. 171:5405–5409.

    PubMed  CAS  Google Scholar 

  • Grompe, M., J. Versalovic, T. Koeuth, and J. R. Lupski. 1991. Mutations in the Escherichia coli dnaG gene suggest coupling between DNA replication and chromosome partitioning. J. Bacteriol. 173:1268–1278.

    PubMed  CAS  Google Scholar 

  • Hiraga, S. 1992. Chromosome and plasmid partition in Escherichia coli. Annu. Rev. Biochem. 61:283–306.

    Article  PubMed  CAS  Google Scholar 

  • Hiraga, S., H. Niki, R. Imamura, T. Ogura, K. Yamanaka, J. Feng, B. Ezaki, and A. Jaffe. 1991. Mutants defective in chromosome partitioning in E. coli. Res. Microbiol. 142:189–194.

    Article  PubMed  CAS  Google Scholar 

  • Hiraga, S., H. Niki, T. Ogura, C. Ichinose, H. Mori, B. Ezaki, and A. Jaffe. 1989. Chromosome partitioning in Escherichia coli: novel mutants producing anucleate cells. J. Bacteriol. 171:1496–1505.

    PubMed  CAS  Google Scholar 

  • Hiraga, S., T. Ogura, H. Niki, C. Ichinose, and H. Mori. 1990. Positioning of replicated chromosomes in Escherichia coli. J. Bacteriol. 172:31–39.

    PubMed  CAS  Google Scholar 

  • Hirota, Y., M. Ricard, and B. Shapiro. 1971. The use of thermosensitive mutants of E. coli in the analysis of cell division. Biomembranes 2:13–31.

    Article  Google Scholar 

  • Hirota, Y., A. Ryter, and F. Jacob. 1968. Thermosensitive mutants of E. coli affected in the processes of DNA synthesis and cellular division. Cold Spring Harbor Symp. Quan. Biol. 33:677–693.

    Article  CAS  Google Scholar 

  • Hussain, K., E. J. Elliot, and G. P. C. Salmond. 1987. The ParD- mutant of Escherichia coli also carries a gyrAam mutation. The complete sequence of gyrA. Mol. Microbiol. 1:259–273.

    Article  PubMed  CAS  Google Scholar 

  • Jacob, F., S. Brenner, and F. Cuzin. 1963. On the regulation of DNA replication in bacteria. Cold Spring Harbor Symp. Quan. Biol. 28:329–348.

    Article  CAS  Google Scholar 

  • Kato, J., Y. Nishimura, R. Imamura, H. Niki, S. Hiraga, and H. Suzuki. 1990. New topoisomerase essential for chromosome segregation in E. coli. Cell 63:393–404.

    Article  PubMed  CAS  Google Scholar 

  • Kato, J., Y. Nishimura, and H. Suzuki. 1989. Escherichia coli parA is an allele of the gyrB gene. Mol. Gen. Genet. 217:178–181.

    Article  PubMed  CAS  Google Scholar 

  • Kato, J., Y. Nishimura, M. Yamada, H. Suzuki, and Y. Hirota. 1988. Gene organization in the region containing a new gene involved in chromosome partition in Escherichia coli. J. Bacteriol. 170:3967–3977.

    PubMed  CAS  Google Scholar 

  • Kuempel, P. L., J. M. Henson, L. Dircks, M. Tecklenberg, and D. F. Lim. 1991. dif a recA-independent recombination site in the terminus region of the chromosome of Escherichia coli. New Biol. 3:799–811.

    PubMed  CAS  Google Scholar 

  • Lobner-Olesen, A., F. G. Hansen, K. V. Rasmussen, B. Martin, and P. L. Kuempel. 1994. The initiation cascade for chromosome replication in wild-type and Dam methyltransferase deficient Escherichia coli cells. EMBO J. 13:1856–1862.

    PubMed  CAS  Google Scholar 

  • Logner-Olesen, A., and P. L. Kuempel. 1992. Chromosome partitioning in Escherichia coli. J. Bacteriol. 174:7883–7889.

    Google Scholar 

  • Luttinger, A. L. 1995. The twisted ‘life’ of DNA in the cell: bacterial topoisomerases. Mol. Microbiol. 15:601–606.

    Article  PubMed  CAS  Google Scholar 

  • Luttinger, A. L., A. L. Springer, and M. B. Schmid. 1991. A cluster of genes that affects nucleoid segregation in Salmonella typhimurium. New Biol. 3:687–697.

    PubMed  CAS  Google Scholar 

  • Niki, H., R. Imamura, M. Kitaoka, K. Yamanaka, T. Ogura, and S. Hiraga. 1992. E. coli MukB protein involved in chromosome partition forms a homodimer with a rod-and-hinge structure having DNA binding and ATP/GTP binding activities. EMBO J. 11:5101–5109.

    PubMed  CAS  Google Scholar 

  • Niki, H., A. Jaffe, R. Imamura, T. Ogura, and S. Hiraga. 1991. The new gene mukB codes for a 177 kd protein with coiled-coil domains involved in chromosome partitioning of E. coli. EMBO J. 10:183–193.

    PubMed  CAS  Google Scholar 

  • Norris, V., T. Alliotte, A. Jaffe, and R. D’ari. 1986. DNA replication termination in Escherichia coli parB (a dnaG allele) and parA and gyrB mutants affected in DNA distribution. J. Bacteriol. 168:494–504.

    PubMed  CAS  Google Scholar 

  • Peng, H. and K. J. Marians. 1993. Decatenation activity of topoisomerase IV during oriC and pBR322 DNA replication in vitro. Proc. Natl. Acad. Sci. USA 90:8571–8575.

    Article  PubMed  CAS  Google Scholar 

  • Peng, H. and K. J. Marians. 1995. The interaction of Escherichia coli topoisomerase IV with DNA. J. Biol. Chem. 270:25286–25290.

    Article  PubMed  CAS  Google Scholar 

  • Rothfield, L. 1994. Bacterial chromosome segregation. Cell 77:963–966.

    Article  PubMed  CAS  Google Scholar 

  • Schmid, M. 1990. A locus affecting nucleoid segregation in Salmonella typhimurium. J. Bacteriol. 172:5416–5424.

    PubMed  CAS  Google Scholar 

  • Schmid, M. B. and U. von Friesleben. 1996. Nucleoid segregation. In Escherichia coli and Salmonella. Cellular and molecular biology, Second edition, F. C. Neidhardt, R. Curtiss III, J. L. Ingraham, E. C. C. Lin, K. B. Low, B. Magasanik, W. S. Reznikoff, M. Riley, M. Schaechter, and H. E. Umbarger, eds., pp. 1662–1669. ASM Press, Washington, D.C.

    Google Scholar 

  • Schmid, M. B. and J. A. Sawitzke. 1993. Multiple bacterial topoisomerases: specialization or redundancy? Bioessays 15:445–449.

    Article  PubMed  CAS  Google Scholar 

  • Skarstad, K. and E. Boye. 1993. Degradation of individual chromosomes in recA mutants of Escherichia coli. J. Bacteriol. 175:5505–5509.

    PubMed  CAS  Google Scholar 

  • Steck, T. R. and K. Drlica. 1984. Bacterial chromosome segregation: evidence for DNA gyrase involvement in decatenation. Cell 36:1081–1088.

    Article  PubMed  CAS  Google Scholar 

  • van Helvoort, J. M. L. M. and C. L. Woldringh. 1994. Nucleoid partitioning in Escherichia coli during steady-state and upon recovery from chloramphenicol treatment. Mol. Microbiol. 13:577–583.

    Article  PubMed  Google Scholar 

  • Versalovic, J. 1994. Evolution of the macromolecular synthesis operon and analysis of bacterial primase. Ph.D. Thesis. Baylor College of Medicine.

    Google Scholar 

  • Versalovic, J., and Lupski, J. R. (1997) Missense mutations in the 3′ end of dna6 gene do not destroy primase activity but confer the chromosome segregation defective (par) phenotype. Microbiology 143:585–594.

    Article  PubMed  CAS  Google Scholar 

  • Vinella, D., A. Jaffe, R. D’Ari, M. Kohiyama, and P. Hughes. 1992. Chromosome partitioning in Escherichia coli in the absence of Dam-directed methylation. J. Bacteriol. 174:2388–2390.

    PubMed  CAS  Google Scholar 

  • Yamanaka, K., T. Ogura, H. Niki, and S. Hiraga. 1996. Identification of two new genes, mukE and mukF, involved in chromosome partitioning in Escherichia col. Mol. Gen. Genet. 250:241–251.

    PubMed  CAS  Google Scholar 

  • Zechiedrich, E. L. and N. R. Cozzarelli. 1995. Roles of topoisomerase IV and DNA gyrase in DNA unlinking during replication in Escherichia coli. Genes Dev. 9:2859–2869.

    Article  PubMed  CAS  Google Scholar 

  • Zyskind, J. W., A. L. Svitil, W. B. Stine, M. C. Biery, and D.W. Smith. 1992. RecA protein of Escherichia coli and chromosome partitioning. Mol. Microbiol. 6:2525–2537.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Britton, R.A., Lupski, J.R. (1998). Segregation of the Bacterial Chromosome. In: de Bruijn, F.J., Lupski, J.R., Weinstock, G.M. (eds) Bacterial Genomes. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6369-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6369-3_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7925-6

  • Online ISBN: 978-1-4615-6369-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics