Skip to main content

Abstract

With the possible exception of the MIT Soligen process, all commercial SFF techniques currently produce parts from polymeric or oligomeric hydrocarbon materials. The dominance of polymeric materials, relative to metals and ceramics, is largely a consequence of their ease of processing at relatively modest temperatures, generally less than 400°C. This permits lower-cost energy sources to be employed by the shaping or fabricating technology than are required to directly fabricate with metals and ceramics. In addition, polymeric materials (including inorganic glasses) have low surface energies and high melt viscosities, relative to metals and other high surface energy, inorganic crystalline materials. These features eliminate the tendency seen in the metals for the molten material to minimize its energy by forming spherical droplets that can cause poor surface quality. Polymeric materials are especially advantageous in terms of the relative ease with which their chemical structures and molecular sizes, characteristics which affect their mechanical and rheological properties, can be modified and optimized for each specific SFF technique and need.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alfrey, Jr., T., and Gurnee, E. F., “Dynamics of Viscoelastic Behavior,” in Eirich, E. R., Ed., Rheology, Vol. 1, Academic Press: New York, 1956.

    Google Scholar 

  • Allcock, H. R., Lampe, F. W., Contemporary Polymer Chemistry, 2nd Edition, Prentice Hall: Englewood Cliffs, New Jersey, 1990.

    Google Scholar 

  • Badrinarayan, B., and Barlow, J. W., “Metal Parts from Selective Laser Sintering of Metal-Polymer Powders,” Solid Freeform Fabrication Symposium Proceedings, The University of Texas at Austin: Austin, Texas, 1992, pp. 141–146.

    Google Scholar 

  • Bajaj, R., “Synthesis and Analysis of New Monomers for Microelectronics Packaging Applications,” Ph.D. Dissertation, The University of Texas at Austin: Austin, Texas, 1995.

    Google Scholar 

  • Barlow, J. W., “Metallic and Ceramic Structures from Selective Laser Sintering of Composite Powders,” 3rd Int. Conference on Rapid Prototyping, University of Dayton: Dayton, OH, 1992, pp. 73–76.

    Google Scholar 

  • Billmeyer, F. W., Jr., Textbook of Polymer Science, Interscience Publishers: New York, 1962.

    Google Scholar 

  • Bird, R. B., Armstrong, R. C., and Hassager, O., Dynamics of Polymeric Fluids, Vol. 1, Wiley: New York, 1977.

    Google Scholar 

  • Bourell, D. L., Marcus, H. L., Beaman, J. J., and Barlow, J. W., “Selective Laser Sintering of Metals and Ceramics,” Int. J. Powder Metallurgy, 1992, 28, pp. 369–381.

    Google Scholar 

  • Bovey, F. A., Kolthoff, I. M., Medalia, A. I., and Meehan, E. J., Emulsion Polymerization, Interscience: New York, 1955.

    Google Scholar 

  • Comb, J. W., and Priedeman, W. R., “Control Parameters and Material Selection Criteria for Rapid Prototyping Systems,” Solid Freeform Fabrication Symposium Proceedings, The University of Texas at Austin: Austin, Texas, 1993, pp. 86–91.

    Google Scholar 

  • Daniels, F., and Alberty, R. A., Physical Chemistry, Wiley: New York, 1961.

    Google Scholar 

  • Deckard, L. and Claar, T. D., “Fabrication of Ceramic and Metal Matrix Composites from Selective Laser Sintered Preforms,” Solid Freeform Fabrication Symposium Proceedings, The University of Texas at Austin: Austin, Texas, 1993, pp. 215–222.

    Google Scholar 

  • Ferry, J. D., Viscoelastic Properties of Polymers, J. Wiley: New York, 1961.

    Google Scholar 

  • Flory, P. J., Principles of Polymer Chemistry, Cornell University Press: Ithaca, New York, 1953.

    Google Scholar 

  • Forderhase, P., McAlea, K., Michalewicz, M., Ganninger, M., and Firestone, K., “SLS Prototypes from Nylon,” Solid Freeform Fabrication Symposium Proceedings, The University of Texas at Austin: Austin, Texas, 1994, pp. 102–109.

    Google Scholar 

  • Forderhase, P. and Corden, R., “Reducing or Eliminating Curl on Wax Parts Produced in the Sinterstation 2000 System,” Solid Freeform Fabrication Symposium Proceedings, The University of Texas at Austin: Austin, Texas, 1993, pp. 94–101.

    Google Scholar 

  • Frenkel, J., “Viscous Flow of Crystalline Bodies under the Action of Surface Tension,” J. Phys. (USSR), 1945, 9, pp. 385–396.

    Google Scholar 

  • Gardner, R. J., and Martin, J. R., “Humid Aging of Plastics: Effect of Molecular Weight on Mechanical Properties and Fracture Morphology of Polycarbonate”, J. Appl. Polym. Sci., 1979, 24, pp. 1269–1280.

    Article  Google Scholar 

  • German, R. M., Particle Packing Characteristics, Metal Powder Industries Federation: Princeton, New Jersey, 1989.

    Google Scholar 

  • Graessley, W. W., “The Entanglement Concept in Polymer Rheology,” Advances in Polymer Science, 1974, 16, pp. 1–179.

    Article  Google Scholar 

  • Inaba, A., Kashiwagi, T., and Brown, J. E., “Effects of Initial Molecular Weight on the Thermal Degradation of Poly (methyl methacrylate): Part 1.,” Polym. Degradation and Stability, 1988, 21, pp. 1–12.

    Article  Google Scholar 

  • Jacobs, P., Rapid Prototyping and Manufacturing Fundamentals of Stereolithography, Soc. of Manufacturing Eng.: Dearborn, MI, 1992.

    Google Scholar 

  • Joseph, E. A., Paul, D. R., and Barlow, J. W., “Boiling Water Aging of a Miscible Blend of Polycarbonate and a Copolyester,” J. Appl Polym. Sci., 1982, 27, pp. 4807–4819.

    Article  Google Scholar 

  • Kashiwagi, T., Hirata, T., and Brown, J. E., “Thermal and Oxidative Degradation of Poly(methyl methacrylate): Molecular Weight,” Macromolecules, 1985, 18, pp. 131–142.

    Article  Google Scholar 

  • Lee, G., and Barlow, J. W., “Selective Laser Sintering of Biomaterials for Implants,” Solid Freeform Fabrication Symposium Proceedings, The University of Texas at Austin: Austin, Texas, 1993, pp. 376–380.

    Google Scholar 

  • Lee, G., and Barlow, J. W., “Selective Laser Sintering of Calcium Phosphate Powders,” Solid Freeform Fabrication Symposium Proceedings, The University of Texas at Austin: Austin, Texas, 1994, pp. 191–197.

    Google Scholar 

  • McKelvey, J. M., Polymer Processing, J. Wiley: New York, 1962.

    Google Scholar 

  • Mikos, A. G., “Kinetic Modeling of Copolymerization/Crosslinking Reactions,” Macromolecules, 1986, 19, pp. 2174–2182.

    Article  Google Scholar 

  • Nelson, J. C., Xue, S., Barlow, J. W., Beaman, J. J., Marcus, H. L., and Bourell, D. L., “A Model of the Selective Laser Sintering of Bisphenol-A Polycarbonate,” Ind. Eng. Chem. Res., 1993, 32, pp. 2305–2317.

    Article  Google Scholar 

  • Nelson, J. C., Vail, N. K., Barlow, J. W., Beaman, J. J., Bourell, D. L., and Marcus, H. L., “Selective Laser Sintering of Polymer-Coated Silicon Carbide Powders,” Ind. Eng. Chem. Res., 1995, 34, pp. 1641–1651.

    Article  Google Scholar 

  • Olabisi, O., Robeson, L. M., and Shaw, M. T., Polymer-Polymer Miscibility, Academic Press: New York, 1979.

    Google Scholar 

  • Pang, T., “StereoLithography Epoxy Resin Development: Accuracy and Dimensional Stability,” Solid Freeform Fabrication Symposium Proceedings, The University of Texas at Austin: Austin, Texas, 1993, pp. 11–26.

    Google Scholar 

  • Progelhof, R. C. Throne, J. L., Polymer Engineering Principles, Hanser Publishers: New York, 1993, chapt. 3.

    Google Scholar 

  • Shalaby, S. W., “Radiative Degradation of Synthetic Polymers: Chemical, Physical, Environmental, and Technical Considerations,” Macromol. Rev., 1979, 14, pp. 419–458.

    Article  Google Scholar 

  • Stevens, M. P., Polymer Chemistry, 2nd Edition, Oxford University Press: New York, 1990.

    Google Scholar 

  • Tadmor, Z. and Gogos, C. G., Principles of Polymer Processing, Wiley-Interscience: New York, 1979.

    Google Scholar 

  • Tobin, J. R., Badrinarayan, B., Barlow, J. W., Beaman, J. J., and Bourell, D. L., “Indirect Metal Composite Part Manufacture using the SLS Process,” Solid Freeform Fabrication Symposium Proceedings, The University of Texas at Austin: Austin, Texas, 1993, pp. 303–307.

    Google Scholar 

  • Tobolsky, A. V., Properties and Structure of Polymers, J. Wiley: New York, 1960.

    Google Scholar 

  • Tobolsky, A. V., “Aspects of Viscoelasticity,” Chapt. IE. in Rosen, B. Ed., Fracture Processes in Polymeric Solids, Interscience: New York, 1964.

    Google Scholar 

  • Vail, N. K., Badrinarayan, B., Barlow, J. W., and Marcus, H. L., “A Thermal Model of Polymer Degradation during Selective Laser Sintering of Polymer-Coated Ceramic Powders,” Rapid Prototyping J., 1996, 2(3), in press.

    Google Scholar 

  • Vail, N. K., Barlow, J. W., Beaman, J. J., Marcus, H. L., and Bourell, D. L., “Development of a Poly (methyl methacrylate — co — n-butyl methacrylate) Copolymer Binder System, J. Appl. Polym. Sci., 1994, 52, pp. 789–812.

    Article  Google Scholar 

  • Vail, N. K., Barlow, J. W., and Marcus, H. L., “Silicon Carbide Preforms for Metal Infiltration by Selective Laser Sintering,” Solid Freeform Fabrication Symposium Proceedings, The University of Texas at Austin: Austin, Texas, 1993, pp. 204–214.

    Google Scholar 

  • Vail, N. K., and Barlow, J. W., “Ceramic Structures by Selective Laser Sintering of Microencapsulated, Finely Divided Ceramic Materials,” Solid Freeform Fabrication Symposium Proceedings, The University of Texas at Austin: Austin, Texas, 1992, pp. 124–130.

    Google Scholar 

  • Vail, N. K. and Barlow, J. W., “Effect of Polymer Coatings on Sintering of Ceramic Parts,” Solid Freeform Fabrication Symposium Proceedings, The University of Texas at Austin: Austin, Texas, 1991, pp. 195–204.

    Google Scholar 

  • Walling, C., “Gel Formation in Addition Polymerization,” J. Am. Chem. Soc., 1945, 67, 441–447.

    Article  Google Scholar 

  • Wu, S., Polymer Interface and Adhesion, Marcel Dekker: New York, 1981.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Beaman, J.J., Barlow, J.W., Bourell, D.L., Crawford, R.H., Marcus, H.L., McAlea, K.P. (1997). Polymers in Solid Freeform Fabrication. In: Solid Freeform Fabrication: A New Direction in Manufacturing. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6327-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6327-3_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-9834-9

  • Online ISBN: 978-1-4615-6327-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics