Applications of Intelligent Techniques in Process Analysis

  • Joachim Angstenberger
  • Richard Weber


In process industry an efficient analysis of the respective processes is an important step and a requirement for advanced process control. Especially in complex situations where several parameters are observed, the identification of process states is a nontrivial task and influences control actions. Improved process analyses, however, could lead to better results in terms of reduced amount of input material, therefore reduced costs, and better quality of products. This contribution describes applications of intelligent techniques for process analysis in chemical, steel, and rubber industry. Presenting the software tools employed points out the advantages of using standard products in order to achieve efficient results.


Blast Furnace Fuzzy Cluster Intelligent Technique Rubber Compound Rubber Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Angstenberger, 1996]
    Angstenberger, J., (1996): “Blast Furnace Analysis with Neural Networks,” in: C. von der Malsburg, W. von Seelen, J. C. Vorbrüggen, B. Sendhoff, Eds.: Artificial Neural Networks—ICANN 96, Springer Verlag, Berlin Heidelberg, 203–208.CrossRefGoogle Scholar
  2. [Angstenberger et al., 1997]
    Angstenberger, J., Berkemeier, D., Kühn, M., and Weber, R. (1997): “Application of Fuzzy Technologies and Neural Networks in Rubber Industry.” Proceedings of ESIT—The European Symposium on Applications of Intelligent Technologies, September 9–10, 1997, Aachen, Germany.Google Scholar
  3. [Behr et al., 1997]
    Behr, D., Kocher T., and Strackeljan, J. (1997): “Fuzzy Pattern Recognition for Automatic Detection of Different Teeth Substances,” Fuzzy Sets and Systems 85, 275–286.CrossRefGoogle Scholar
  4. [Bezdek, 1981]
    Bezdek, J. C. (1981): Pattern Recognition with Fuzzy Objective Function Algorithms, New York, London.zbMATHCrossRefGoogle Scholar
  5. [Bezdek and Pal, 1992]
    Bezdek, J. C., Pal, S. K., Eds., (1992): Fuzzy Models for Pattern Recognition, IEEE Press, New York.Google Scholar
  6. [Boyn, 1996]
    Boyn, H. (1996): “Rohstoffaustausch in Rezepturen—Ein wissensbasierter Ansatz mit einem Fuzzy System.” MIT GmbH (Hrsg.): Anwendungen der Intelligenten Datenanalyse—Realisierungen mit DataEngine, Tagungsband zum Anwendersymposium, October 23–24, 1996, Aachen, 141–145.Google Scholar
  7. [Bulsari and Saxen, 1995]
    Bulsari, A. and Saxen, B. (1995): “Classification of blast furnace probe temperatures using neural networks,” Steel Research 66(6), 231–236.Google Scholar
  8. [Famili et al., 1997]
    Famili, A., Shen, W.-M., Weber, R., and Simoudis, E. (1997): “Data Preprocessing and Intelligent Data Analysis,” Intelligent Data Analysis 1(1),
  9. [Garbers, 1996]
    Garbers, N. (1996): “Lebensdauerabschätzung von Kühlwasserschläuchen im dynamischen Prüfstand,” MIT GmbH (Hrsg.): Anwendungen der Intelligenten Datenanalyse—Realisierungen mit DataEngine, Tagungsband zum Anwendersymposium, October 23–24, 1996, Aachen, 155–159.Google Scholar
  10. [Meier and Zimmermann, 1994]
    Meier, W., Weber, R., and Zimmermann, H.-J. (1994): “Fuzzy Data Analysis—Methods and Industrial Applications,” Fuzzy Sets and Systems 61, 19–28.CrossRefGoogle Scholar
  11. Mikenina, L. and Weber, R. (1996): “Liquid Level Control with Fuzzy Techniques using DataEngine V.i.,” Proceedings EUFIT 96—Fourth European Congress on Intelligent Techniques and Soft Computing, Aachen, Germany, September 2–5, 1996, 956–959.Google Scholar
  12. [MIT, 1996]
    MIT (1996): DataEngine V.i 1.5—Manual. AachenGoogle Scholar
  13. [MIT, 1997a]
    MIT (1997): DataEngine Version 2.1—Manual. Aachen.Google Scholar
  14. [MIT, 1997b]
    MIT (1997): DataEngine ADL—Application Development Library Version 2.1—Manual. Aachen.Google Scholar
  15. [Omori, 1987]
    Omori, Y. (ed.) (1987): Blast Furnace Phenomena and Modelling, The Iron and Steel Institute of Japan, Elsevier, London, 1987.Google Scholar
  16. [Werner & Pfleiderer, 1995]
    Werner & Pfleiderer (1995): Description of the RHEOMILL system, Werner & Pfleiderer Gummitechnik GmbH, Freudenberg (in German).Google Scholar
  17. [Windham, 1981]
    Windham, M.P. (1981): “Cluster Validity for Fuzzy Clustering Algorithms,” Fuzzy Sets and Systems 5, 177–185.zbMATHCrossRefGoogle Scholar
  18. [Zimmermann, 1996]
    Zimmermann, H.-J. (1996): Fuzzy Set Theory and Its Applications, third ed., Kluwer Academic Publishers, Boston, Dordrecht, London.zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Joachim Angstenberger
    • 1
  • Richard Weber
    • 1
  1. 1.Management Intelligenter Technologien GmbHAachenGermany

Personalised recommendations