Advertisement

Pb(Zr,Ti)O3 Based Thin Film Ferroelectric Nonvolatile Memories

Chapter
Part of the Electronic Materials: Science and Technology book series (EMST, volume 3)

Abstract

Ferroelectric thin film semiconductor memories have the potential to dominate world memory markets. Technical developments in the next five years will determine whether ferroelectric thin film memory technology will be the basis of an annual $30 billion market or will be relegated to only niche market status. Among the technologies that ferroelectric random access memories (FERAMs) could replace are electrically erasable programmable read only memories (EEPROMs), Flash nonvolatile memories (FLASH), and dynamic random access memories (DRAMs). Ferroelectric thin film nonvolatile memory technology will be emphasized in this chapter. FERAMs offer advantages of fast write speeds, high endurance and low operating voltage compared to EEPROMs and FLASH technologies. Present FERAM write speeds are approximately two orders of magnitude faster than FLASH and four orders of magnitude faster than EEPROMs. Further, operating voltages are less than 5 volts for FERAMs compared to 12 volt operation for FLASH and EEPROMs. Present FERAM technologies based on Pb(Zr,Ti)O3 (PZT) with oxide electrodes or SrBi2Ta2O9 (SBT) with Pt electrodes provide in excess of 1013 read/write cycles.

Keywords

Smart Card Perovskite Phase Nonvolatile Memory Remanent Polarization Ferroelectric Thin Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Shimada, Y. Nagano, E. Fujii, M. Azuma, Y. Uemotoss, T. Sumi, Y. Judai, S. Hayashi, N. Moriwaki, J. Nakane, T. Otsuki, C. A. Araujo and L. D. McMillian, Integrated Ferroelectrics, [11] 229–245 (1995).CrossRefGoogle Scholar
  2. 2.
    W. Kinney, Integrated Ferroelectrics, [4] 131–134 (1994).CrossRefGoogle Scholar
  3. 3.
    B. M. Melnick, J. Gregory and C. A. Arajuo, Integrated Ferroelectrics, [11] 145–160 (1995).CrossRefGoogle Scholar
  4. 4.
    J. T. Evans and J. A. Bullington, US Patent No 5 070 385 (3 December 1991).Google Scholar
  5. 5.
    J. T. Evans and J. A. Bullington, US Patent No 5 119 329 (2 June 1992).Google Scholar
  6. 6.
    J. T. Evans, W. L. Warren, B. A. Tuttle and C. H. Seager, US Patent No 5 578 846 (26 November 1996).Google Scholar
  7. 7.
    CJ. Brennan, Integrated Ferroelectrics, 5 203–210 (1994).CrossRefGoogle Scholar
  8. 8.
    H. N. Al-Shareef, B. A. Tuttle, W. L. Warren, T. J. Headley, D. Dimos, J. Voigt and R. D. Nasby, J. Appl. Phys., 79(2) 1013 (1996).CrossRefGoogle Scholar
  9. 9.
    D. Dimos, W. L. Warren, M. B. Sinclair, B. A. Tuttle and R. W. Schwartz, J. Appl. Phys., 76(7) 4305–4315 (1994).CrossRefGoogle Scholar
  10. 10.
    B. A. Tuttle, H. N. Al-Shareef, W. L. Warren, M. V. Raymond. T. J. Headley, J. A. Voigt, J. Evans and R. Ramesh, Microelectronic Engineering, 29 223–230 (1995).CrossRefGoogle Scholar
  11. 11.
    P. D. Hren, S. H. Rou, H. N. Al-Shareef, M. S. Ameen, O. Auciello and A. I. Kingon, Proc. 3rd Int. Symp. on Integrated Ferroelectrics, 612–626 (1991).Google Scholar
  12. 12.
    G. A. C. M. Spierings, J. B. A. Van Zon, M. Klee and P. K. Larsen, Proc. of the Fourth Int. Symp on Int. Ferroelectrics, Monterey, CA, 280–289 (1992).Google Scholar
  13. 13.
    S. R. Summerfelt, D. Kotecki, A. Kingon and H. N. Al-Shareef, Pt Hillock Formation and Decay, Mat. Res. Soc. Symp. Proc. Vol 361, 257–268 (1995).CrossRefGoogle Scholar
  14. 14.
    A. Grill, W. Kane, J, Viggiano, M. Braydym and R. Labowitz, J. Mat. Res., 7 3260 (1992).CrossRefGoogle Scholar
  15. 15.
    H. N. Al-Shareef, B. A. Tuttle, W. L. Warren, T. J. Headley, D. Dimos, J. A. Voigt and R. D. Nasby, J. Appl. Phys., 79(2) 1013–1016 (1996).CrossRefGoogle Scholar
  16. 16.
    H. N. Al-Shareef, K. R. Bellur, O. Auciello and A. I. Kingon, Thin Solid Films, 256, 73 (1995).CrossRefGoogle Scholar
  17. 17.
    J. T. Cheung, P. E. D. Morgan, R. Neurogankar Proceedings of the Fourth International Symposium on Integrated Ferroelectrics, 158–170, editor R. Panholzer, (1992).Google Scholar
  18. 18.
    J. T. Cheung, P. E. D. Morgan, D. H. Lowndes, X-Y. Zheng and J. Breen, Appl. Phys. Lett., 62(17) 2045–2047 (1993).CrossRefGoogle Scholar
  19. 19.
    R. Ramesh, H. Gilchrist, T. Sands, V. G. Keramidas, R. Haakenasen and D. K. Fork, Appl Phys. Lett., 63, 3592 (1993).CrossRefGoogle Scholar
  20. 20.
    H. N. Al-Shareef, B. A. Tuttle, W. L. Warren, D. Dimos, M. V. Raymond and M. A. Rodriguez, Appl. Phys. Lett., 68(2) 272 (1996).CrossRefGoogle Scholar
  21. 21.
    W. L. Warren, D. Dimos, B. A. Tuttle, R. D. Nasby and G. E. Pike, Appl. Phys. Lett., 65(8), 1018–1020 (1994).CrossRefGoogle Scholar
  22. 22.
    W. L. Warren, D. Dimos, B. A. Tuttle, G. E. Pike, R. W. Schwartz, P. Clews and D. Mclntyre, J. Appl. Phys. 77, 6695 (1995).CrossRefGoogle Scholar
  23. 23.
    I. K. Yoo, S. B. Desu and J. Xing, MRS Symp. Proa, 310 165 (1993).CrossRefGoogle Scholar
  24. 24.
    B. A. Tuttle, J. A. Voigt, T. J. Headley, B. G. Potter, D. Dimos, R. W. Schwartz, M. T. Dugger, J. Michael, R. D. Nasby, T. J. Garino and D. C. Goodnow, Ferroelectrics, 151 11–20 (1994).CrossRefGoogle Scholar
  25. 25.
    B. A. Tuttle, T. J. Headley, H. N. Al-Shareef, J. A. Voigt, M. Rodriguez, J. Michael and W. L. Warren, J. Matls. Sci., 11(9) 2309–2317 (1996).Google Scholar
  26. 26.
    W. L. Warren, D. Dimos, B. A. Tuttle and D. Smyth, J. Amer. Ceram. Soc, 77(10) 1753–1757 (1994).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  1. 1.Sandia National LaboratoriesAlbuquerqueUSA

Personalised recommendations