Layered Perovskite Thin Films and Memory Devices

Part of the Electronic Materials: Science and Technology book series (EMST, volume 3)


This chapter is a review of material which in general had been presented earlier by the author in shorter journal articles.1 It describes particular aspects of an overall paradigm shift in nonvolatile computer memories from silicon-technology based EEPROMs (electrically erasable programmable read-only memories) to devices in which the stored information is coded into + and - polarizations in small (0.7 × 0.7 μm) ceramic thin-film ferroelectrics.2-5 Such devices have erase/rewrite speeds of 60 ns in commercial embodiments and 0.9 ns in laboratory prototypes, many orders of mangintude faster than the speeds of the best EEPROMs,6-8 as summarized in Table I. In addition, they may be integrated directly into GaAs circuitry (not just Si devices), where conventional EEPROMs are impossible, due to the different oxidation rates of Ga and As. Fundamental questions concerning aging of performance, however, have delayed full commercialization.9,10 Because ferroelectrics normally have extremely large dielectric constants, their use as passive elements in computer memories, particularly as non-switching capacitors in DRAMs (dynamic random access memories) is also rapidly evolving.11 Although early prototypes of ferroelectric memories employed many different compounds, including BaMgF4 and KNO3, most recent studies have emphasized lead zirconate-titanate (PZT) for nonvolatile memory elements and barium strontium titanate (BST) as DRAM capacitors. These memory devices are part of an even larger family of integrated ferroelectric devices, summarized in Table II, that include lead-scandium tantalate integrated pyroelectric detectors, GaAs MMIC bypass capacitors, and strontium titanate phased array radars, etc.


Coercive Field Strontium Titanate Remanent Polarization Barium Strontium Titanate Breakdown Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    See especially Scott JF, Ross FM, Araujo CA, Scott MC and Huffman M, MRS Bull., July 1996; Scott JF and Ross FM, Ferroelectrics (in press), ECAPD (Lake Bled, Slovenia) August 25 1996.Google Scholar
  2. 2.
    Scott JF and Araujo CA, Science 246 (1989) p. 1400–5; a full translation into Russian also appeared in the Soviet journal “Binti” in April 1990; Yohsuke Mochizuki, Nikkei Microdevices (March 1993) p. 82-5 (in Japanese).CrossRefGoogle Scholar
  3. 3.
    Bondurant DW and Gnadinger FP, IEEE Spectrum 26 (1989) p. 30–34.CrossRefGoogle Scholar
  4. 4.
    Scott JF, Paz de Araujo CA and McMillan LD, “Integrated Ferroelectrics,” Condensed Matter News 1 (1992) p. 16–20.Google Scholar
  5. 5.
    Scott JF, “Ferroelectric Memories,” Physics World (February 1995) p. 46–50.Google Scholar
  6. 6.
    Peters R, Defense Electronics (October 1991) p. 7.Google Scholar
  7. 7.
    Mihara T, et al., Nikkei Electronics (5 May 1993) Vol 581, p 94–100.Google Scholar
  8. 8.
    Parker LH and Tasch AF, IEEE Circ. Dev. Mag. (Jan 1990) p. 17.Google Scholar
  9. 9.
    Batra IP and Silverman BD, Sol. St. Commun. 11 (1972) p. 291.CrossRefGoogle Scholar
  10. 10.
    Bernacki S, et al., Integ. Ferroelec. 3 (1993) p. 1; Shohata N, Matsubara S, Miyasaka Y and Yonezawa M, Proc. 6th Int. Symp. Appl. Ferroelec. (ISAF-6), Lehigh Univ. (IEEE, Piscataway, NJ, 1986) p. 580.CrossRefGoogle Scholar
  11. 11.
    Moazzami R, Hu C and Shepherd WH, IEEE Trans. Elec. Dev. 39 (1992) p. 2044.; IEDM Lett. 11 (1990) p. 454.CrossRefGoogle Scholar
  12. 1lb.
    Al-Shareef HN, Dimos D, Boyle TJ, Warren WL and Turtle BA, Appl. Phys. Lett. (in press).Google Scholar
  13. 1lc.
    Janovec V, Phys. Lett. 99A (1983) p. 384.CrossRefGoogle Scholar
  14. 12.
    Smolensky GA and Agronovskaya AI, Fiz. Tverd. Tela 1 (1959) p. 169; 1, (1959) p. 442; 1 (1959) p. 990 [translations: Sov. Phys. Sol. St. 1 (1959) p. 149; 1 (1959) p. 400; 1 (1959) p. 907].Google Scholar
  15. 13.
    Fang PH and Fatuzzo E, J. Phys. Soc. Jpn. 17 (1962) p. 238. BaBi4Ti4015 switching speed is also described by Fatuzzo E and Merz W in Ferroelectricity [North Holland, Amsterdam (1967) p. 227]; see also Stadler HL, J. Appl. Phys. 29 (1958) p. 1485; 33 (1962) p. 3487.CrossRefGoogle Scholar
  16. 14.
    Subbaro EC, J. Chem. Phys. 34 (1961) p. 695; Phys. Rev. 122 (1961) p. 804; IRE Trans. Elec. Dev. 8 (1961) p. 422; J. Am. Ceram. Soc 45 (1962) p. 166; 45 (1962) p. 564; J. Phys. Chem. Sol. 23 (1962) p. 665.CrossRefGoogle Scholar
  17. 14b.
    Srolovitz DJ and Scott JF, Phys. Rev. B34 (1986) p. 1815.CrossRefGoogle Scholar
  18. 15.
    Scott JF, Melnick BM, McMillan LD and Paz de Araujo CA, Integ. Ferroelec. 3 (1993) p. 129; Scott JF, Azuma M, Paz de Araujo CA, McMillan LD, Scott MC and Roberts T, Integ. Ferroelec 4 (1994) p. 61.Google Scholar
  19. 16.
    Wouters DJ, Wilems GJ and Maes HE, Proc. EMF-8 (Nijmegen, 4 July 1995); Ferroelectrics (in press, 1996).Google Scholar
  20. 17.
    Pawlaczyk CZ, Tagantsev AK, Brooks K, Reaney IM, Klissurska R and Setter N, Integ. Ferroelec. 8 (1995) p. 293.CrossRefGoogle Scholar
  21. 18.
    Waser R, Science and Technology of Electroceramic Thin Films, ed. by Auciello O and Waser R (Kluwer, Dordrecht, 1995) p. 223; Waser R, Baiatu T and Hardtl K, J. Am. Ceram. Soc. 73 (1990) p. 1645; 73 (1990) p. 1654; 73 (1990) p. 1663.CrossRefGoogle Scholar
  22. 19.
    Brennan C, Integ. Ferroelec. 8 (1995) p. 335; 8 (1995) p. 93, especially p. 106-7.CrossRefGoogle Scholar
  23. 20.
    Scott JF, Melnick BM, Cuchiaro JD, Zuleeg R, Araujo CA, McMillan LD and Scott MC, Integ. Ferroelec. 4 (1994) p. 85; Tredgold RH, Space Charge Conduction in Solids (Elsevier, Amsterdam, 1966); see also Frank RI and Simmons JG, J. Appl. Phys. 3, (1967) p. 832.CrossRefGoogle Scholar
  24. 21a.
    Autran JL, Paillet P, Leray JL and Devine RAB, Suppl. a la Revue “Le Vide: Science, Technique, et Applications”, 275 (1995) p. 44–53.Google Scholar
  25. 21b.
    Freund F, Freund MM, Butow SJ, Sarrazin P and Niepce JC, Ibid., p. 538-543.Google Scholar
  26. 22.
    Joshi V, Roy D and Mecartney ML, Integ. Ferroelec. 6 (1995) p. 321.CrossRefGoogle Scholar
  27. 23.
    Peng CJ, Hu H and Krupanidhi SB, Appl. Phys. Lett. 63 (1993) p. 1038.CrossRefGoogle Scholar
  28. 24.
    Roy D, Peng CJ and Krupanidhi SB, Appl. Phys. Lett. 60 (1992) p. 2478.CrossRefGoogle Scholar
  29. 25.
    Paz de Araujo CA, Cuchiaro JD, McMillan LD, Scott MC and Scott JF, Nature 374 (1995) p. 627–629; Paz de Arajuo CA, Cuchiaro JD, Scott MC and McMillan LD, International Patent Pub. No. WO 93/12542 (24 June 1993).CrossRefGoogle Scholar
  30. 26.
    Robblee LS, US Pat. Nos. 4677989 and 4717581 (1987).Google Scholar
  31. 27.
    Robblee LS, et al., Mat. Res. Soc. Symp. Proc. 55 (1986) p. 303.CrossRefGoogle Scholar
  32. 28.
    Robblee LS and Cogan SF, “Metals for Medical Electrodes”, Encyclopedia of Materials Science& Engineering, Suppl. Vol. 1, ed. R. W. Chan (Pergamon Press, Oxford, 1988).Google Scholar
  33. 29.
    de Vierman AEM, et al., Ferroelectrics (in press; proceedings of EMF-8 Nijmegen, The Netherlands, 4 July 1995).Google Scholar
  34. 30.
    Plumlee R, Sandia Lab. rept. SC-RR (1967) p. 730.Google Scholar
  35. 31.
    Duiker HM and Beale PD, Phys. Rev. B41 (1990) p. 490.CrossRefGoogle Scholar
  36. 32.
    Duiker HM, et al., J. Appl. Phys. (1990) p. 68, 5783Google Scholar
  37. 33.
    Raleigh DO, Fast-Ion Transport in Solids (North-Holland, Amsterdam 1972) p. 479–481.Google Scholar
  38. 34.
    Matsubara S, Sakuma T, Yamamichi S, Yamaguchi H and Miyasaka Y, Mat. Res. Soc. Symp. Proc. 200 (1990) p. 243; 243 (1992) p. 281.CrossRefGoogle Scholar
  39. 35.
    Scott JF, Science and Technology of Electroceramic Thin Films [Proc. NATO ARW, Maratea, Italy, 21 June 1994] edited by Waser R and Auciello O (Kluwer, Dordrecht, 1995) p. 249.CrossRefGoogle Scholar
  40. 36.
    Gerson R and Marshall TC, J. Appl. Phys. 30 (1959) p. 1650.CrossRefGoogle Scholar
  41. 37.
    Sumi T et al., Integ. Ferroelec. 6 (1995) p. 1–14.CrossRefGoogle Scholar
  42. 38.
    Amanuma K, Hase T and Miyasaka Y, Appl. Phys. Lett. 66 (1994) p. 221.CrossRefGoogle Scholar
  43. 39.
    Kingon AI, et al., Appl. Phys. Lett, (in press).Google Scholar
  44. 40.
    Klee M, et al., Ref. 27, p. 99.Google Scholar
  45. 41.
    McMillan LD, et al., Integ. Ferroelec. 1 (1992) p. 351.Google Scholar
  46. 42.
    Sudhama C, Carrano JC, Parker LH, Chikarmane V, Lee JC, Tasch AF, Miller W, Abt N and Shepherd WH, MRS Conf. Proc. 200 (1990) p. 331.CrossRefGoogle Scholar
  47. 43.
    Carrano JC, Sudhama C, Lee J, Tasch A and Miller W, IEDM Conf. Proc. (IEEE, New York, 1989) p. 225.Google Scholar
  48. 44.
    Chen J, Udayakumar KR, Brooks KG and Cross LE, MRS Conf. Proc. 243 (1992) p. 361.CrossRefGoogle Scholar
  49. 45.
    Scott JF, et al., Integ. Ferroelec. 6 (1995) p. 189, especially Fig 6b.CrossRefGoogle Scholar
  50. 46.
    Triebwasser S, Phys. Rev. 118, (1960), p. 100.CrossRefGoogle Scholar
  51. 47.
    Kanzig W, Phys. Rev. 98 (1955) p. 549.CrossRefGoogle Scholar
  52. 48.
    Fletcher NH, Hilton AD and Ricketts BW, “Optimisation of Energy Storage Density in Ceramic Capacitors” [submitted to J. Phys. D (1995)].Google Scholar
  53. 49.
    Uehling EA, Lectures in Theoretical Physics, Vol. V (Wiley, New York, 1963) p. 138–217.Google Scholar
  54. 50.
    Kwak BS, Zhang K, Boyd EP, Erbil A and Wilkens BJ, J. Appl. Phys. 69 (1991) p. 767; Kwak BS, Erbil A, et al., Phys. Rev. Lett. 68 (1992) p. 3733; Phys Rev. B49 (1994) p. 14865.CrossRefGoogle Scholar
  55. 51.
    Kay HF and Dunn JW, Phil. Mag., 7 (1962) p. 2027.CrossRefGoogle Scholar
  56. 52.
    Scott JF and Pouligny B, J. Appl. Phys., 64 (1988) p. 1547.CrossRefGoogle Scholar
  57. 53.
    Boutin H, Fraser BC and Jona F, J. Appl. Phys., 35 (1963) p. 2554.Google Scholar
  58. 54.
    Scott JF, Godfrey RB, Araujo CA, McMillan LD, Meadows HB and Golabi, M Proc. 6th ISAF (IEEE, New York, 1986) p. 569.Google Scholar
  59. 55.
    Scott JF, Pouligry B, Dimmler K, Parris M, Butler D and Eaton J, J. Appl. Phys. 62 (1987) p. 4510; Gruverman AL, Auciello O and Tokumoto M, paper VI-4, p. 117-120 (Pac-Rim Conf. Ferroelec. Appl., Kyoto, 27 May 1996)CrossRefGoogle Scholar
  60. 56.
    Wouters DJ, Willems G and Maes HE, Ferroelectrics (in press)Google Scholar
  61. 57.
    Moll JL and Tarui Y, IEEE Trans. Elec. Dev. ED 10 (1963) p. 328.Google Scholar
  62. 58.
    Zuleeg R and Wieder H, Sol. St. Electron. 9, (1966), p. 657.CrossRefGoogle Scholar
  63. 59.
    Heymen PM and Heilmeier GH, Proc. IEEE 54, (1966), p. 842.CrossRefGoogle Scholar
  64. 60.
    Perlman SS and Ludwig KH, IEEE Trans. Elec. Dev. ED14 (1967) p. 816.CrossRefGoogle Scholar
  65. 61.
    Teather GG and L. Young, Sol. St. Electron. 11 (1968) p. 527.CrossRefGoogle Scholar
  66. 62.
    Crawford JC and English FL, IEEE Trans. Elec. Dev. ED16 (1969) p. 525.CrossRefGoogle Scholar
  67. 63.
    Park JK and Granneman WW, Ferroelectrics 10 (1975) p. 217.CrossRefGoogle Scholar
  68. 64.
    Wu SY, Ferroelectrics 11 (1975) p. 379; paper J9, AIME Electronics Materials Conf., Cornell Univ. (June 1977).CrossRefGoogle Scholar
  69. 65.
    Taylor GW, Ferroelectrics 18 (1978) p. 17.CrossRefGoogle Scholar
  70. 66.
    Buhay H, Sinharoy S, Francombe MH, Kasner WH, Talvacchio J, Park BK, Doyle NJ, Lampe DR and Polinsky M, Integ. Ferroelec. 1 (1992) p. 213.CrossRefGoogle Scholar
  71. 67.
    Sinharoy S, Lampe DR, Buhay H and Francombe MH, Integ. Ferroelec. 1 (1992) p. 377.CrossRefGoogle Scholar
  72. 68.
    Kalkur TS, Kwor RY, Levenson L and Kammerdiner L, Integ. Ferroelec. 1 (1992) p. 327.CrossRefGoogle Scholar
  73. 69.
    Several speakers, Proc. 8th Int. Sym. Integ. Ferroelec. (ISIF-8): Integ. Ferroelec. (in press).Google Scholar
  74. 70.
    Ishibashi Y and Orihara H, Integ. Ferroelec. 9, 57 (1995).CrossRefGoogle Scholar
  75. 71.
    Scott JF, Pouligny B, Dimmler K, Parris M, Butler D and Eaton S, J. Appl. Phys. 62, 4510 (1987); Dimmler K, Parris M, Butler D, Eaton S, Pouligny B, Scott JF and Ishibashi Y, Ibid. 61, 5467 (1987).CrossRefGoogle Scholar
  76. 72.
    DeVilbis A, Derbenwick G, Paz de Araujo CA and Cuchiaro J, Int. Symp. Integ. Ferroelec., Tempe, AZ (21 March 1996; Integ. Ferroelec, in press).Google Scholar
  77. 73.
    McMillan LD, Huffman M, Roberts TL, Scott MC and Paz de Araujo CA, Integ. Ferroelec. 4, 313 (1994); McMillan LD, Paz de Araujo CA, Roberts T, Cuchiaro J, Scott MC and Scott JF, Ibid. 1, 351 (1992).CrossRefGoogle Scholar
  78. 74.
    Paz de Araujo CA, Cuchiaro JD, McMillan LD, Scott MC and Scott JF, Nature 374, 627 (1995).CrossRefGoogle Scholar
  79. 75.
    Tagantsev AK, Pawlaczyk C, Brooks K, Landivar M, Colla E and Setter N, Integ. Ferroelec. 6, 309 (1995).CrossRefGoogle Scholar
  80. 76.
    Larsen PK, Cuppens R and Spierings GACM, Ferroelec. 128, 265 (1992).CrossRefGoogle Scholar
  81. 77.
    Jones RE, Jr., Motorola Corp., private communication.Google Scholar
  82. 78.
    Amanuma K, MRS Proc. (San Francisco, 7 April 1996); Kazushi Amanuma and Takemitsu Kunio, FMA-13, Kyoto, 30 May 1996, Abstract p.33-34 (Jpn. J. Appl. Phys., Suppl. edited by Y. Ishibashi et al., in press).Google Scholar
  83. 79.
    It is useful to note that much worse problems were reported for area-scaling of PZT capacitors, namely an increase in coercive field from 1.0 V to 4.0 V across 300 nm as area was reduced to 80 mm2: Faure SP, Gaucher P and Ganne JP, MRS Proc. 243, 129 (1992).CrossRefGoogle Scholar
  84. 80.
    Araujo CA, Cuchiaro JD, Scott MC and McMillan LD, Int. Patent #WO-93/12542 (1993); US Pat. No. 5, 519, 234 (1996).Google Scholar
  85. 81.
    Noguchi T, Hase T and Miyasaka Y, Ref. 78, p. 37–38.Google Scholar
  86. 82.
    Amanuma K, private communication.Google Scholar
  87. 83.
    Robblee LS, et al., MRS Proc. 55, 303 (1986).CrossRefGoogle Scholar
  88. 84.
    Scott JF, Integ. Ferroelec. 9, 1 (1995).CrossRefGoogle Scholar
  89. 85.
    Ramesh R et al., Appl. Phys. Lett. 61, 1537 (1992); 63, 27 (1993).CrossRefGoogle Scholar
  90. 86.
    Wu S-Y and Geideman WA, Integ. Ferroelec. 2, 105 (1992).CrossRefGoogle Scholar
  91. 87.
    Geideman W, private communication.Google Scholar
  92. 88.
    Smythe WR, Static and Dynamic Electricity, McGraw-Hill, New York (1950).Google Scholar
  93. 89.
    Kraus JD, Antennas, McGraw-Hill, New York (1950).Google Scholar
  94. 90.
    Mitsubishi-Symetrix devices: See Ushikubo M, et al., Ref. 78, p.77–78.Google Scholar
  95. 91.
    Boutin H, Fraser BC and Jona F, J. Appl. Phys. 35, 2554 (1963).Google Scholar
  96. 92.
    Scott JF and Pouligny B, J. Appl. Phys. 64, 1547 (1988).CrossRefGoogle Scholar
  97. 93.
    Al-Shareef HN et al., Appl. Phys. Lett. (1996, in press).Google Scholar
  98. 94.
    Gruverman AL, Auciello O and Tokumoto H, Proc. 3rd Pac-Rim. Conf. Appl. Ferroelec, paper VI-4, p. 117–118, Kyoto, 27 May 1996 (Integ. Ferroelec, in press).Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  1. 1.Faculty of ScienceUniversity of New South WalesSydneyAustralia

Personalised recommendations