Skip to main content

Layered Perovskite Thin Films and Memory Devices

  • Chapter
Thin Film Ferroelectric Materials and Devices

Part of the book series: Electronic Materials: Science and Technology ((EMST,volume 3))

Abstract

This chapter is a review of material which in general had been presented earlier by the author in shorter journal articles.1 It describes particular aspects of an overall paradigm shift in nonvolatile computer memories from silicon-technology based EEPROMs (electrically erasable programmable read-only memories) to devices in which the stored information is coded into + and - polarizations in small (0.7 × 0.7 μm) ceramic thin-film ferroelectrics.2-5 Such devices have erase/rewrite speeds of 60 ns in commercial embodiments and 0.9 ns in laboratory prototypes, many orders of mangintude faster than the speeds of the best EEPROMs,6-8 as summarized in Table I. In addition, they may be integrated directly into GaAs circuitry (not just Si devices), where conventional EEPROMs are impossible, due to the different oxidation rates of Ga and As. Fundamental questions concerning aging of performance, however, have delayed full commercialization.9,10 Because ferroelectrics normally have extremely large dielectric constants, their use as passive elements in computer memories, particularly as non-switching capacitors in DRAMs (dynamic random access memories) is also rapidly evolving.11 Although early prototypes of ferroelectric memories employed many different compounds, including BaMgF4 and KNO3, most recent studies have emphasized lead zirconate-titanate (PZT) for nonvolatile memory elements and barium strontium titanate (BST) as DRAM capacitors. These memory devices are part of an even larger family of integrated ferroelectric devices, summarized in Table II, that include lead-scandium tantalate integrated pyroelectric detectors, GaAs MMIC bypass capacitors, and strontium titanate phased array radars, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. See especially Scott JF, Ross FM, Araujo CA, Scott MC and Huffman M, MRS Bull., July 1996; Scott JF and Ross FM, Ferroelectrics (in press), ECAPD (Lake Bled, Slovenia) August 25 1996.

    Google Scholar 

  2. Scott JF and Araujo CA, Science 246 (1989) p. 1400–5; a full translation into Russian also appeared in the Soviet journal “Binti” in April 1990; Yohsuke Mochizuki, Nikkei Microdevices (March 1993) p. 82-5 (in Japanese).

    Article  Google Scholar 

  3. Bondurant DW and Gnadinger FP, IEEE Spectrum 26 (1989) p. 30–34.

    Article  Google Scholar 

  4. Scott JF, Paz de Araujo CA and McMillan LD, “Integrated Ferroelectrics,” Condensed Matter News 1 (1992) p. 16–20.

    Google Scholar 

  5. Scott JF, “Ferroelectric Memories,” Physics World (February 1995) p. 46–50.

    Google Scholar 

  6. Peters R, Defense Electronics (October 1991) p. 7.

    Google Scholar 

  7. Mihara T, et al., Nikkei Electronics (5 May 1993) Vol 581, p 94–100.

    Google Scholar 

  8. Parker LH and Tasch AF, IEEE Circ. Dev. Mag. (Jan 1990) p. 17.

    Google Scholar 

  9. Batra IP and Silverman BD, Sol. St. Commun. 11 (1972) p. 291.

    Article  Google Scholar 

  10. Bernacki S, et al., Integ. Ferroelec. 3 (1993) p. 1; Shohata N, Matsubara S, Miyasaka Y and Yonezawa M, Proc. 6th Int. Symp. Appl. Ferroelec. (ISAF-6), Lehigh Univ. (IEEE, Piscataway, NJ, 1986) p. 580.

    Article  Google Scholar 

  11. Moazzami R, Hu C and Shepherd WH, IEEE Trans. Elec. Dev. 39 (1992) p. 2044.; IEDM Lett. 11 (1990) p. 454.

    Article  Google Scholar 

  12. Al-Shareef HN, Dimos D, Boyle TJ, Warren WL and Turtle BA, Appl. Phys. Lett. (in press).

    Google Scholar 

  13. Janovec V, Phys. Lett. 99A (1983) p. 384.

    Article  Google Scholar 

  14. Smolensky GA and Agronovskaya AI, Fiz. Tverd. Tela 1 (1959) p. 169; 1, (1959) p. 442; 1 (1959) p. 990 [translations: Sov. Phys. Sol. St. 1 (1959) p. 149; 1 (1959) p. 400; 1 (1959) p. 907].

    Google Scholar 

  15. Fang PH and Fatuzzo E, J. Phys. Soc. Jpn. 17 (1962) p. 238. BaBi4Ti4015 switching speed is also described by Fatuzzo E and Merz W in Ferroelectricity [North Holland, Amsterdam (1967) p. 227]; see also Stadler HL, J. Appl. Phys. 29 (1958) p. 1485; 33 (1962) p. 3487.

    Article  Google Scholar 

  16. Subbaro EC, J. Chem. Phys. 34 (1961) p. 695; Phys. Rev. 122 (1961) p. 804; IRE Trans. Elec. Dev. 8 (1961) p. 422; J. Am. Ceram. Soc 45 (1962) p. 166; 45 (1962) p. 564; J. Phys. Chem. Sol. 23 (1962) p. 665.

    Article  Google Scholar 

  17. Srolovitz DJ and Scott JF, Phys. Rev. B34 (1986) p. 1815.

    Article  Google Scholar 

  18. Scott JF, Melnick BM, McMillan LD and Paz de Araujo CA, Integ. Ferroelec. 3 (1993) p. 129; Scott JF, Azuma M, Paz de Araujo CA, McMillan LD, Scott MC and Roberts T, Integ. Ferroelec 4 (1994) p. 61.

    Google Scholar 

  19. Wouters DJ, Wilems GJ and Maes HE, Proc. EMF-8 (Nijmegen, 4 July 1995); Ferroelectrics (in press, 1996).

    Google Scholar 

  20. Pawlaczyk CZ, Tagantsev AK, Brooks K, Reaney IM, Klissurska R and Setter N, Integ. Ferroelec. 8 (1995) p. 293.

    Article  Google Scholar 

  21. Waser R, Science and Technology of Electroceramic Thin Films, ed. by Auciello O and Waser R (Kluwer, Dordrecht, 1995) p. 223; Waser R, Baiatu T and Hardtl K, J. Am. Ceram. Soc. 73 (1990) p. 1645; 73 (1990) p. 1654; 73 (1990) p. 1663.

    Chapter  Google Scholar 

  22. Brennan C, Integ. Ferroelec. 8 (1995) p. 335; 8 (1995) p. 93, especially p. 106-7.

    Article  Google Scholar 

  23. Scott JF, Melnick BM, Cuchiaro JD, Zuleeg R, Araujo CA, McMillan LD and Scott MC, Integ. Ferroelec. 4 (1994) p. 85; Tredgold RH, Space Charge Conduction in Solids (Elsevier, Amsterdam, 1966); see also Frank RI and Simmons JG, J. Appl. Phys. 3, (1967) p. 832.

    Article  Google Scholar 

  24. Autran JL, Paillet P, Leray JL and Devine RAB, Suppl. a la Revue “Le Vide: Science, Technique, et Applications”, 275 (1995) p. 44–53.

    Google Scholar 

  25. Freund F, Freund MM, Butow SJ, Sarrazin P and Niepce JC, Ibid., p. 538-543.

    Google Scholar 

  26. Joshi V, Roy D and Mecartney ML, Integ. Ferroelec. 6 (1995) p. 321.

    Article  Google Scholar 

  27. Peng CJ, Hu H and Krupanidhi SB, Appl. Phys. Lett. 63 (1993) p. 1038.

    Article  Google Scholar 

  28. Roy D, Peng CJ and Krupanidhi SB, Appl. Phys. Lett. 60 (1992) p. 2478.

    Article  Google Scholar 

  29. Paz de Araujo CA, Cuchiaro JD, McMillan LD, Scott MC and Scott JF, Nature 374 (1995) p. 627–629; Paz de Arajuo CA, Cuchiaro JD, Scott MC and McMillan LD, International Patent Pub. No. WO 93/12542 (24 June 1993).

    Article  Google Scholar 

  30. Robblee LS, US Pat. Nos. 4677989 and 4717581 (1987).

    Google Scholar 

  31. Robblee LS, et al., Mat. Res. Soc. Symp. Proc. 55 (1986) p. 303.

    Article  Google Scholar 

  32. Robblee LS and Cogan SF, “Metals for Medical Electrodes”, Encyclopedia of Materials Science& Engineering, Suppl. Vol. 1, ed. R. W. Chan (Pergamon Press, Oxford, 1988).

    Google Scholar 

  33. de Vierman AEM, et al., Ferroelectrics (in press; proceedings of EMF-8 Nijmegen, The Netherlands, 4 July 1995).

    Google Scholar 

  34. Plumlee R, Sandia Lab. rept. SC-RR (1967) p. 730.

    Google Scholar 

  35. Duiker HM and Beale PD, Phys. Rev. B41 (1990) p. 490.

    Article  Google Scholar 

  36. Duiker HM, et al., J. Appl. Phys. (1990) p. 68, 5783

    Google Scholar 

  37. Raleigh DO, Fast-Ion Transport in Solids (North-Holland, Amsterdam 1972) p. 479–481.

    Google Scholar 

  38. Matsubara S, Sakuma T, Yamamichi S, Yamaguchi H and Miyasaka Y, Mat. Res. Soc. Symp. Proc. 200 (1990) p. 243; 243 (1992) p. 281.

    Article  Google Scholar 

  39. Scott JF, Science and Technology of Electroceramic Thin Films [Proc. NATO ARW, Maratea, Italy, 21 June 1994] edited by Waser R and Auciello O (Kluwer, Dordrecht, 1995) p. 249.

    Chapter  Google Scholar 

  40. Gerson R and Marshall TC, J. Appl. Phys. 30 (1959) p. 1650.

    Article  Google Scholar 

  41. Sumi T et al., Integ. Ferroelec. 6 (1995) p. 1–14.

    Article  Google Scholar 

  42. Amanuma K, Hase T and Miyasaka Y, Appl. Phys. Lett. 66 (1994) p. 221.

    Article  Google Scholar 

  43. Kingon AI, et al., Appl. Phys. Lett, (in press).

    Google Scholar 

  44. Klee M, et al., Ref. 27, p. 99.

    Google Scholar 

  45. McMillan LD, et al., Integ. Ferroelec. 1 (1992) p. 351.

    Google Scholar 

  46. Sudhama C, Carrano JC, Parker LH, Chikarmane V, Lee JC, Tasch AF, Miller W, Abt N and Shepherd WH, MRS Conf. Proc. 200 (1990) p. 331.

    Article  Google Scholar 

  47. Carrano JC, Sudhama C, Lee J, Tasch A and Miller W, IEDM Conf. Proc. (IEEE, New York, 1989) p. 225.

    Google Scholar 

  48. Chen J, Udayakumar KR, Brooks KG and Cross LE, MRS Conf. Proc. 243 (1992) p. 361.

    Article  Google Scholar 

  49. Scott JF, et al., Integ. Ferroelec. 6 (1995) p. 189, especially Fig 6b.

    Article  Google Scholar 

  50. Triebwasser S, Phys. Rev. 118, (1960), p. 100.

    Article  Google Scholar 

  51. Kanzig W, Phys. Rev. 98 (1955) p. 549.

    Article  Google Scholar 

  52. Fletcher NH, Hilton AD and Ricketts BW, “Optimisation of Energy Storage Density in Ceramic Capacitors” [submitted to J. Phys. D (1995)].

    Google Scholar 

  53. Uehling EA, Lectures in Theoretical Physics, Vol. V (Wiley, New York, 1963) p. 138–217.

    Google Scholar 

  54. Kwak BS, Zhang K, Boyd EP, Erbil A and Wilkens BJ, J. Appl. Phys. 69 (1991) p. 767; Kwak BS, Erbil A, et al., Phys. Rev. Lett. 68 (1992) p. 3733; Phys Rev. B49 (1994) p. 14865.

    Article  Google Scholar 

  55. Kay HF and Dunn JW, Phil. Mag., 7 (1962) p. 2027.

    Article  Google Scholar 

  56. Scott JF and Pouligny B, J. Appl. Phys., 64 (1988) p. 1547.

    Article  Google Scholar 

  57. Boutin H, Fraser BC and Jona F, J. Appl. Phys., 35 (1963) p. 2554.

    Google Scholar 

  58. Scott JF, Godfrey RB, Araujo CA, McMillan LD, Meadows HB and Golabi, M Proc. 6th ISAF (IEEE, New York, 1986) p. 569.

    Google Scholar 

  59. Scott JF, Pouligry B, Dimmler K, Parris M, Butler D and Eaton J, J. Appl. Phys. 62 (1987) p. 4510; Gruverman AL, Auciello O and Tokumoto M, paper VI-4, p. 117-120 (Pac-Rim Conf. Ferroelec. Appl., Kyoto, 27 May 1996)

    Article  Google Scholar 

  60. Wouters DJ, Willems G and Maes HE, Ferroelectrics (in press)

    Google Scholar 

  61. Moll JL and Tarui Y, IEEE Trans. Elec. Dev. ED 10 (1963) p. 328.

    Google Scholar 

  62. Zuleeg R and Wieder H, Sol. St. Electron. 9, (1966), p. 657.

    Article  Google Scholar 

  63. Heymen PM and Heilmeier GH, Proc. IEEE 54, (1966), p. 842.

    Article  Google Scholar 

  64. Perlman SS and Ludwig KH, IEEE Trans. Elec. Dev. ED14 (1967) p. 816.

    Article  Google Scholar 

  65. Teather GG and L. Young, Sol. St. Electron. 11 (1968) p. 527.

    Article  Google Scholar 

  66. Crawford JC and English FL, IEEE Trans. Elec. Dev. ED16 (1969) p. 525.

    Article  Google Scholar 

  67. Park JK and Granneman WW, Ferroelectrics 10 (1975) p. 217.

    Article  Google Scholar 

  68. Wu SY, Ferroelectrics 11 (1975) p. 379; paper J9, AIME Electronics Materials Conf., Cornell Univ. (June 1977).

    Article  Google Scholar 

  69. Taylor GW, Ferroelectrics 18 (1978) p. 17.

    Article  Google Scholar 

  70. Buhay H, Sinharoy S, Francombe MH, Kasner WH, Talvacchio J, Park BK, Doyle NJ, Lampe DR and Polinsky M, Integ. Ferroelec. 1 (1992) p. 213.

    Article  Google Scholar 

  71. Sinharoy S, Lampe DR, Buhay H and Francombe MH, Integ. Ferroelec. 1 (1992) p. 377.

    Article  Google Scholar 

  72. Kalkur TS, Kwor RY, Levenson L and Kammerdiner L, Integ. Ferroelec. 1 (1992) p. 327.

    Article  Google Scholar 

  73. Several speakers, Proc. 8th Int. Sym. Integ. Ferroelec. (ISIF-8): Integ. Ferroelec. (in press).

    Google Scholar 

  74. Ishibashi Y and Orihara H, Integ. Ferroelec. 9, 57 (1995).

    Article  Google Scholar 

  75. Scott JF, Pouligny B, Dimmler K, Parris M, Butler D and Eaton S, J. Appl. Phys. 62, 4510 (1987); Dimmler K, Parris M, Butler D, Eaton S, Pouligny B, Scott JF and Ishibashi Y, Ibid. 61, 5467 (1987).

    Article  Google Scholar 

  76. DeVilbis A, Derbenwick G, Paz de Araujo CA and Cuchiaro J, Int. Symp. Integ. Ferroelec., Tempe, AZ (21 March 1996; Integ. Ferroelec, in press).

    Google Scholar 

  77. McMillan LD, Huffman M, Roberts TL, Scott MC and Paz de Araujo CA, Integ. Ferroelec. 4, 313 (1994); McMillan LD, Paz de Araujo CA, Roberts T, Cuchiaro J, Scott MC and Scott JF, Ibid. 1, 351 (1992).

    Article  Google Scholar 

  78. Paz de Araujo CA, Cuchiaro JD, McMillan LD, Scott MC and Scott JF, Nature 374, 627 (1995).

    Article  Google Scholar 

  79. Tagantsev AK, Pawlaczyk C, Brooks K, Landivar M, Colla E and Setter N, Integ. Ferroelec. 6, 309 (1995).

    Article  Google Scholar 

  80. Larsen PK, Cuppens R and Spierings GACM, Ferroelec. 128, 265 (1992).

    Article  Google Scholar 

  81. Jones RE, Jr., Motorola Corp., private communication.

    Google Scholar 

  82. Amanuma K, MRS Proc. (San Francisco, 7 April 1996); Kazushi Amanuma and Takemitsu Kunio, FMA-13, Kyoto, 30 May 1996, Abstract p.33-34 (Jpn. J. Appl. Phys., Suppl. edited by Y. Ishibashi et al., in press).

    Google Scholar 

  83. It is useful to note that much worse problems were reported for area-scaling of PZT capacitors, namely an increase in coercive field from 1.0 V to 4.0 V across 300 nm as area was reduced to 80 mm2: Faure SP, Gaucher P and Ganne JP, MRS Proc. 243, 129 (1992).

    Article  Google Scholar 

  84. Araujo CA, Cuchiaro JD, Scott MC and McMillan LD, Int. Patent #WO-93/12542 (1993); US Pat. No. 5, 519, 234 (1996).

    Google Scholar 

  85. Noguchi T, Hase T and Miyasaka Y, Ref. 78, p. 37–38.

    Google Scholar 

  86. Amanuma K, private communication.

    Google Scholar 

  87. Robblee LS, et al., MRS Proc. 55, 303 (1986).

    Article  Google Scholar 

  88. Scott JF, Integ. Ferroelec. 9, 1 (1995).

    Article  Google Scholar 

  89. Ramesh R et al., Appl. Phys. Lett. 61, 1537 (1992); 63, 27 (1993).

    Article  Google Scholar 

  90. Wu S-Y and Geideman WA, Integ. Ferroelec. 2, 105 (1992).

    Article  Google Scholar 

  91. Geideman W, private communication.

    Google Scholar 

  92. Smythe WR, Static and Dynamic Electricity, McGraw-Hill, New York (1950).

    Google Scholar 

  93. Kraus JD, Antennas, McGraw-Hill, New York (1950).

    Google Scholar 

  94. Mitsubishi-Symetrix devices: See Ushikubo M, et al., Ref. 78, p.77–78.

    Google Scholar 

  95. Boutin H, Fraser BC and Jona F, J. Appl. Phys. 35, 2554 (1963).

    Google Scholar 

  96. Scott JF and Pouligny B, J. Appl. Phys. 64, 1547 (1988).

    Article  Google Scholar 

  97. Al-Shareef HN et al., Appl. Phys. Lett. (1996, in press).

    Google Scholar 

  98. Gruverman AL, Auciello O and Tokumoto H, Proc. 3rd Pac-Rim. Conf. Appl. Ferroelec, paper VI-4, p. 117–118, Kyoto, 27 May 1996 (Integ. Ferroelec, in press).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Scott, J.F. (1997). Layered Perovskite Thin Films and Memory Devices. In: Ramesh, R. (eds) Thin Film Ferroelectric Materials and Devices. Electronic Materials: Science and Technology, vol 3. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6185-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6185-9_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-9993-3

  • Online ISBN: 978-1-4615-6185-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics