Advertisement

Study of Growth Processes in Ferroelectric Films and Layered Heterostructures via in Situ, Real-Time Ion Beam Analysis

Chapter
Part of the Electronic Materials: Science and Technology book series (EMST, volume 3)

Abstract

Ferroelectric films can display a wide range of dielectric, ferroelectric, piezoelectric, electrostrictive, and pyroelectric properties. The potential utilization of these properties in a new generation of devices has motivated intensive studies on the synthesis, characterization, and determination of processing-microstructure-property relationships of ferroelectric thin films during the last five years. In addition, there has been an increased drive for integrating ferroelectric film-based heterostructures with different substrate materials to demonstrate devices which exploit the dielectric, ferroelectric, piezoelectric, electrostrictive, and pyroelectric properties of these materials. For example, the high dielectric permittivities of perovskite-type materials can be advantageously used in dynamic random access memories (DRAM),1-3 while the large values of switchable remanent polarization of ferroelectric materials are suitable for non-volatile ferroelectric random access memories (NVFRAM).1-3

Keywords

Ferroelectric Thin Film Ferroelectric Film Shadow Cone Polarization Fatigue Ru02 Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    “Proceedings of the 3th, 4th and 5th International Symposium on Integrated Ferroelectrics (ISIF), C. A. Paz de Araujo et al. (Eds.) (University of Colorado Press, Colorado Springs, 1991, 1992 and 1993). Proc. 6th ISIF, R. Zuleeg (Ed.), Integrated Ferroelectrics vol. 6-8 (1995). Proc. 7th ISIF, A. I. Kingon (ed.), Integrated Ferroelectrics vol. 10-11 (1995).Google Scholar
  2. 2.
    “Ferroelectric Thin Films I,” MRS Symposia Proc. vol. 200, (MRS, Pittsburgh, 1990), E. R. Myers and A. I. Kingon (Eds.). “Ferroelectric Thin Films II,” MRS Symposia Proc. vol. 243, (MRS, Pittsburgh, 1991) A. I. Kingon, E. R. Myers and B. Tuttle (Eds.). “Ferroelectric Thin Films III,” MRS Symposia Proc. vol. (MRS, Pittsburgh, 1993). “Ferroelectric Thin Films IV,” MRS Symposia Proc. vol. 361 (MRS, Pittsburgh, 1995).Google Scholar
  3. 3.
    “Science and Technology of Electroceramic Thin Films,” NATO/ASI Book Series E 284, O. Auciello and R. Waser (Eds.) (Kluwer Academic Publishers, The Netherlands, 1995).Google Scholar
  4. 4.
    “Pulsed Laser Ablation Deposition,” MRS Bulletin vol. 17, G. K. Hubler (Ed.) (1992).Google Scholar
  5. 5.
    O. Auciello, A. R. Krauss and K. D. Gifford, Ch. 10 in “Ferroelectric Thin Films: Synthesis and Basic Properties,” C. A. Paz de Araujo, J. F. Scott and G. W. Taylor (Eds.), Gordon and Breach (1996) p. 393.Google Scholar
  6. 6.
    O. Auciello, R. Dat and R. Ramesh, Ch. 13 in “Ferroelectric Thin Films: Synthesis and Basic Properties,” C. A. Paz de Araujo, J. F. Scott and G. W. Taylor (Eds.), Gordon and Breach (1996).Google Scholar
  7. 7.
    M. de Keijser and G. J. D. Dormans, MRS Bulletin vol. 21, O. Auciello and R. Ramesh (Eds.) (June 1996) p. 37.Google Scholar
  8. 8.
    S. K. Dey, Ch. 9 in “Ferroelectric Thin Films: Synthesis and Basic Properties,” C. A. Paz de Araujo, J. F. Scott and G. W. Taylor (Eds.), Gordon and Breach (1996) p. 329. S. K. Dey and P. V. Alluri, MRS Bulletin vol. 21, O. Auciello and R. Ramesh (Eds.) (June 1996) p. 44.Google Scholar
  9. 9.
    O. Auciello, K. D. Gifford and A. I. Kingon, Appl. Phys. Lett 64, 2873 (1994).CrossRefGoogle Scholar
  10. 10.
    L. D. McMillan, C. A. Paz de Araujo, T. Roberts, J. Cuchiaro, M. C. Scott and J. F. Scott, Ferroelectrics 2, 351 (1992).Google Scholar
  11. 11.
    C. A. Paz de Araujo, J. D. Cuchiaro, M. C. Scott and L. D. McMillan, International Patent Application W093/12542 (1993).Google Scholar
  12. 12.
    M. Huffman, Integrated Ferroelectrics 10, 39 (1995).CrossRefGoogle Scholar
  13. 13.
    B. M. Melnick, J. Gregory and C. A. Paz de Araujo, Integrated Ferroelectrics 11, 505 (1995).CrossRefGoogle Scholar
  14. 14.
    R. Dat, J. K. Lee, O. Auciello and A. I. Kingon, Appl. Phys. Lett. 67, 572 (1995).CrossRefGoogle Scholar
  15. 15.
    D. P. Vijay, S. B. Desu, M. Nagata, X. Zhang and T. C. Chen, MRS Symp. Proc. vol. 361, B. A. Tuttle, S. B. Desu, R. Ramesh and T. Shiosaki (eds.) (1995) p. 3.Google Scholar
  16. 16.
    J. F. Scott, F. M. Ross, C. A. Paz de Araujo, M. C. Scott and M. Huffman, MRS Bulletin vol. 21 (July 1996), O. Auciello and R. Ramesh (Eds.) p. 33.Google Scholar
  17. 17.
    G. A. Smolenskii, V. A. Isupov and A. I. Agranovskaya, Sov. Phys. Solid. State 1, 1969 (1959).Google Scholar
  18. 18.
    T. L. Li, Y. Zhu, S. B. Desu, C. H. Peng and M. Nagata, Appl. Phys. Lett. 68, 616 (1996).CrossRefGoogle Scholar
  19. 19.
    D. Thomas, O. Auciello, A. L Kingon, R. Waser and M. Schumacher, Integrated Ferroelectrics (in press, 1996).Google Scholar
  20. 20.
    A. R. Krauss, Y. Lin, O. Auciello, G. J. Lamich, D. M. Gruen, J. A. Schultz and R. P. H. Chang, J. Vac. Sci.Technol. A12, 1943 (1994).CrossRefGoogle Scholar
  21. 21.
    Y. Lin, A. R. Krauss, O. Auciello, Y. Nishino, D. M. Gruen, R. P. H. Chang and J. A. Schultz, J. Vac. Sci.Technol. A12, 1557 (1994).CrossRefGoogle Scholar
  22. 22.
    O. Auciello, A. R. Krauss, Y. Lin, R. P. H. Chang and D. M. Gruen, Materials Research Society Proc. “Epitaxial Oxide Thin Films and Heterostructures,” D. K. Fork, J. M. Philips, R. Ramesh and R. M. Wolf (Eds.) (MRS, Pittsburgh, 1994) p. 385.Google Scholar
  23. 23.
    A. R. Krauss, O. Auciello, Y. Lin, R. P. H. Chang and D. M. Gruen, Integrated Ferroelectrics 8, 129 (1995).CrossRefGoogle Scholar
  24. 24.
    A. R. Krauss and O. Auciello, U. S. Patent No 4, 923, 585 (1990).Google Scholar
  25. 25.
    A. R. Krauss, O. Auciello, A. I. Kingon, M. S. Ameen, Y. L. Liu, T. Barr, T. M. Graettinger, S. H. Rou, C. S. Soble and D. M. Gruen, Appl. Surface Sci. 46, 67 (1990).CrossRefGoogle Scholar
  26. 26.
    J. R. Bird and J. S. Williams, Ion Beams for Materials Analysis, Academic Press Australia (1989).Google Scholar
  27. 27.
    C. A. Andersen and J. R. Hinthorne, Anal Chem, 45, 1421 (1973)CrossRefGoogle Scholar
  28. 28.
    J. M. Schroeer, T. N. Rhodin and R. C. Bradley, Surface Science 34, 571 (1973)CrossRefGoogle Scholar
  29. 29.
    V. R. Deline, C. A. Evans. Jr. and P. Williams, Appl. Phys. Lett. 33, 578 (1978)CrossRefGoogle Scholar
  30. 30.
    H. D. Hagstrum, Phys. Rev. 96, 336 (1954)CrossRefGoogle Scholar
  31. 31.
    W. P. Poschenrieder, Intern. J. Mass Spectrom. Ion Phys. 9, 357 (1972)CrossRefGoogle Scholar
  32. 32.
    K. Waters, A. Bensaoula, J. A. Schultz, K. Eipers-Smith and A. Freundlich, J. Crystal Growth, 127, 972 (1993).CrossRefGoogle Scholar
  33. 33.
    B. A. Mamyrin, V.l. Karataev, D. V. Shmikk and V. A. Zagulin, Sov. Phys. JETP 37, 45 (1973).Google Scholar
  34. 34.
    J. A. Schultz and H. K. Schmidt, US Patent # 5, 087, 815 (1992).Google Scholar
  35. 35.
    V. S. Smentkowski, A. R. Krauss, D. M. Gruen, J. C. Holocek and J. A. Schultz, J. Vac. Sci. Technol. (in press, 1997).Google Scholar
  36. 36.
    A. R. Krauss and V. Krohn “Aspects of Secondary Ion Emission” in Mass Spectrometry 6 Specialist Periodic Reports, Royal Society of Chemistry, London (1980).Google Scholar
  37. 37.
    M. S. Hammond, J. A. Schultz and A. R. Krauss, J. Vac. Sci. Techn. A13, 1136 (1995).CrossRefGoogle Scholar
  38. 38.
    O. Auciello, A. R. Krauss, J. A. Schultz, V. Smentkowski and J. Holecek (in preparation).Google Scholar
  39. 39.
    J. T. McKinney and R. P. Frankenthal, Proc. Ann. Meeting Nat. Assn. Corrosion Engineers, March 22, 1973, Anaheim CA.Google Scholar
  40. 40.
    D. P. Smith, J. Appl. Phys. 38, 340 (1967).CrossRefGoogle Scholar
  41. 41.
    L. Marchut, T. M. Buck, G. H. Wheatley and C. J. McMahon, Surf. Sci. 141, 549 (1984).CrossRefGoogle Scholar
  42. 42.
    J. W. Rabalais and J. Chen, J. Chem. Phys. 85, 3617 (1986).CrossRefGoogle Scholar
  43. 43.
    R. S. Bhattacharya, W. Eckstein and H. Verbeek, Surf. Sci. 93, 563 (1980).CrossRefGoogle Scholar
  44. 44.
    E. Taglauer, W. Englert, W. Heiland and D. P. Jackson, Phys. Rev. Lett 45, 740 (1980).CrossRefGoogle Scholar
  45. 45.
    H. Niehus and E. Pruss, Surf. Sci. 119, 349 (1982).CrossRefGoogle Scholar
  46. 46.
    H. Niehus, J. Vac. Sci. Technol. A5, 751 (1987).CrossRefGoogle Scholar
  47. 47.
    A. R. Krauss, M. Rangaswamy, Y. Lin, D. M. Gruen, J. A. Schultz, H. K. Schmidt and R. P. H. Chang, in “Multicomponent and Multilayered Thin Films for Advanced Microtechnologies: Techniques, Fundamentals and Devices” O. Auciello and J. Engemann, (Eds.), Kluwer Academic Publishers, Netherlands (1993) p. 251.CrossRefGoogle Scholar
  48. 48.
    H. K. Schmidt, J. A. Schultz and Z. Zheng, Diamond and Diamond-Like Coatings, R. E. Clausing (Ed.) (Plenum Press, New York, 1991), p. 669.CrossRefGoogle Scholar
  49. 49.
    W. Eckstein, Nucl. Instrum. Meth. Phys. Res. B27, 78 (1987).CrossRefGoogle Scholar
  50. 50.
    M. Katayama, E. Nomura, N. Kanekama, H. Soejima and M. Aono, Nucl. Instr. Meth. Phys. Res. B33, 857 (1988).CrossRefGoogle Scholar
  51. 51.
    H. Niehus and R. Spitzl, Surface and Interface Analysis 17, 287 (1991).CrossRefGoogle Scholar
  52. 52.
    M. Aono, C. Oshima, S. Zaima, S. Otani, Y. Ishizawa, Jpn. J. Appl. Phys. 20, L829 (1981).CrossRefGoogle Scholar
  53. 53.
    M. Aono, Y. Hou, C. Oshima and Y. Ishizawa, Phys. Rev. Lett. 49, 567 (1982).CrossRefGoogle Scholar
  54. 54.
    M. Aono, Nucl. Instrum. Meth. B2, 374 (1984).CrossRefGoogle Scholar
  55. 55.
    B. V. King, M. Katayama, M. Aono, R. Daley and R. Williams, Vacuum 41, 938 (1990).CrossRefGoogle Scholar
  56. 56.
    L. Woolverton, J. A. Schultz, K. Eipers-Smith and K. Waters, Submitted to J. Vac. Sci. Technol.Google Scholar
  57. 57.
    A. R. Krauss, O. Auciello and J. A. Schultz, MRS Bulletin vol. 20, 18 (1995).Google Scholar
  58. 58.
    A. R. Krauss, J. Im, J. A. Schultz, V. S. Smentkowski, K. Waters, C. D. Zuiker, D. M. Gruen and R. P. H. Chang, Thin Solid Films 270, 130 (1995)CrossRefGoogle Scholar
  59. 59.
    B. Doyle, R. T. McGrath, A. E. Pontau, Nucl. Instrum. Meth. Phys. Res. B22, 34 (1987).CrossRefGoogle Scholar
  60. 60.
    J. Im, A. R. Krauss, Y. Lin, J. A. Schultz, O. H. Auciello, D. M. Gruen and R. P. H. Chang, Nucl. Instrum. Meth. B118, 772 (1996).CrossRefGoogle Scholar
  61. 61.
    Y. Lin, A. R. Krauss, R. P. H. Chang, O. Auciello, D. M. Gruen and J. A. Schultz, Thin Solid Films 253, 247 (1994CrossRefGoogle Scholar
  62. 62.
    A. R. Krauss, J. Im, J. A. Schultz, V. S. Smentkowski, K. Waters, C. D. Zuiker, D. M. Gruen and R. P. H. Chang, Thin Solid Films 270, 130 (1995).CrossRefGoogle Scholar
  63. 63.
    J. F. Mahoney, A. Y. Yahiku, H. L. Daley, R. D. Moore and J. Perel, J. Appl. Phys. 40, 5101 (1969).CrossRefGoogle Scholar
  64. 64.
    H. R. Kaufman, J. Cuomo and J. M. E. Harper, J. Vac. Sci. Technol. 21, 725 (1982).CrossRefGoogle Scholar
  65. 65.
    A. R. Miedema, Z. Metallkd. 69, 287 (1977).Google Scholar
  66. 66.
    J. W. Gibbs, Trans. Connecticut Acad Sci. 3, 108, (1875-76).Google Scholar
  67. 67.
    O. Auciello and R. Ramesh (Eds.), MRS Bulletin vol. 22 (June 1996) and vol. 23 (July 1996).Google Scholar
  68. 68.
    H. N. Al-Shareef, D. Dimos, T. J. Boyle, W. L. Warren and B. A. Tuttle, Appl. Phys. Lett. 68, 690 (1996).CrossRefGoogle Scholar
  69. 69.
    C. A. Paz de Araujo, J. D. Cuchiaro, M. C. Scott and L. D. McMillan, International Patent Application W093/12542 (1993).Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  1. 1.Materials Science DivisionArgonne National LaboratoryArgonne IllinoisUSA
  2. 2.Materials Science and Chemistry DivisionsArgonne National LaboratoryArgonne IllinoisUSA

Personalised recommendations