Elastic Domains in Ferroelectric Epitaxial Films

Part of the Electronic Materials: Science and Technology book series (EMST, volume 3)


The possibility of the formation of periodic arrangements of 90°-domains in ferroelectric epitaxial films is discussed. Domains can construct a simple alternation of two domains or more complex hierarchical polydomain structures. The physical reason for their formation is a relaxation of the elastic energy of misfit stresses in an epitaxial system. Therefore, they are called elastic domains. The thermodynamic theory of elastic domains predicts architectures of polydomain structures, domain fractions in them, their scales and effect of external mechanical and electrical fields on these characteristics. The theory is supposed to provide a guidance for modeling and engineering polydomain structures in ferroelectric epitaxial heterostructures. Current theoretical and experimental studies on polydomain heterostructures are discussed.


Elastic Energy Misfit Dislocation Epitaxial Film Elastic Field Misfit Strain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. L. Roitburd, Phys. Stat. Sol. (a), 37, 329 (1976).CrossRefGoogle Scholar
  2. 2.
    L. D. Landau and E. M. Lifshitz, Phys. Zs. Sowjet., 8, 153 (1935).zbMATHGoogle Scholar
  3. 3.
    C. Kittel, Rev. Mod. Phys., 21, 541 (1949); Phys. Rev., 70, 965 (1948).CrossRefGoogle Scholar
  4. 4.
    L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media, Pergamon Press, New York (1984).Google Scholar
  5. 5.
    M. E. Lines and A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials, Clarendon, Oxford (1977).Google Scholar
  6. 6.
    A. L. Roitburd in Solid State Physics, H. Ehrenreich, F. Seitz and D. Turnbull Eds, Vol.: 33, p.317, Academic Press, New York (1978); A. L. Roytburd, Phase Transitions, 45, 1 (1993).Google Scholar
  7. 7.
    R. Bruinsma and A. Zangwill, J. Phisique, 47, 2055 (1986).CrossRefGoogle Scholar
  8. 8.
    H. Warlimont and L. Delaey, Martensitic Transformations in Copper-Silver-and Gold Based Alloys, Progress in Materials Science, B. Chalmers, J. W. Christian and T. B. Massalski Eds., Vol.: 18, Pergamon Press, Oxford (1974).Google Scholar
  9. 9.
    A. K. Streiffer, E. M. Zielinski, B. M. Lairson and J. C. Bravman, Appl. Phys. Lett., 58, 19 (1991)CrossRefGoogle Scholar
  10. 10.
    B. S. Kwak, A. Erbil, B. J. Wilkens, J. D. Budai, M. F. Chisholm and L.A Boatner, Phys. Rev. Lett., 68, 3723 (1992); B. S. Kwak, A. Erbil, J. D. Budai, M. F. Chisholm, L. A. Boatner and B. J. Wilkens, Phys. Rev. B, 49, 14865 (1994).CrossRefGoogle Scholar
  11. 11.
    J. S. Speck, A. Seifert, W. Pompe and R. Ramesh, J. Appl. Phys., 76, 477 (1994).CrossRefGoogle Scholar
  12. 12.
    V. Srikant, E. J. Tarsa, D. R. Clarke and J. S. Speck, J. Appl. Phys., 77, 1517 (1995); A. Seifert F. F. Lange and J. S. Speck, J Mater. Res., 10, 680 (1995).CrossRefGoogle Scholar
  13. 13.
    CM. Foster, W. Pompe, A. C. Daykin and J. S. Speck, J. Appl. Phys., 79, 1405 (1996); CM. Foster, Z. Li, M. Buckett, D. Miller, P. M. Baldo, L. E. Rehn, G. R. Bai, D. Guo, H.You and K. L. Merkle,, J. Appl. Phys., 78, 2607 (1995).CrossRefGoogle Scholar
  14. 14.
    A. L. Roytburd, Heteroepitaxy of Dissimilar Materials, MRS Symp. Proc., A. Zangwill Ed., 221, 100 (1991).Google Scholar
  15. 15.
    A. L. Roytburd, High Temperature Superconductors; Fundamental Properties and Noval Applications, MRS Symp. Proc., D. Christen Ed., 169, 801 (1990).Google Scholar
  16. 16.
    D. A. Vul and E. K. H. Salje, Physica C, 253, 231 (1995).CrossRefGoogle Scholar
  17. 17.
    J. S. Speck and W. Pompe, J. Appl. Phys., 76, 466 (1994).CrossRefGoogle Scholar
  18. 18.
    J. S. Speck, A. C. Daykin, A. Seifert, A. E. Romanov and W. Pompe, J. Appl. Phys., 78, 1696 (1995).CrossRefGoogle Scholar
  19. 19.
    A. E. Romanov, W. Pompe, J. S. Speck, J. Appl. Phys., 79, 4037 (1996).CrossRefGoogle Scholar
  20. 20.
    N. A. Pertsev and A. G. Zembilgotov, J. Appl. Phys., 78, 6170 (1995).CrossRefGoogle Scholar
  21. 21.
    N. Sridhar, J. M. Rickman and D. J. Srolovitz, Acta Mater., 44, 4085, 4097 (1996).CrossRefGoogle Scholar
  22. 22.
    A. L. Roytburd and Y. Yu in, Twinning in Advanced Materials, M. H. Yoo and M. Wuttig Eds., TMS, Vol.: 221, p. 217 (1994).Google Scholar
  23. 23.
    A. G. Khachaturyan, Theory of Structural Transformation in Solids, John Wiley and Sons, New York (1983).Google Scholar
  24. 24.
    C Kooy and U. Enz, Philips Res. Repts., 15, 7 (1960).Google Scholar
  25. 25.
    N. A. Pertsev, G. Arlt and AG. Zembilgotov, Phys. Rev. Lett., 76, 1364 (1996).CrossRefGoogle Scholar
  26. 26.
    A. L. Roytburd, submitted to Phys. Rev. Lett..Google Scholar
  27. 27.
    A. L. Roytburd and Y. Yu, Ferroelectrics, 144, 137 (1993).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  1. 1.Department of Materials and Nuclear EngineeringUniversity of MarylandCollege ParkUSA

Personalised recommendations