Skip to main content

An Overview of the Heat Shock Proteins, Their Regulation, and Function

  • Chapter
Heat Shock Proteins and the Cardiovascular System

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 192))

Abstract

This chapter is multifunctional, serving as an introduction to the heat shock proteins and as well as covering HSPs that have had limited or no study in the heart. The regulation of expression of the HSPs is reviewed here. Lastly, key research not included in the remainder of the volume, including the function of HSPs and nuclear localization, will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adam EJH, Adam SA. 1994. Identification of cytosolic factors required for nuclear location sequence-mediated binding to the nuclear envelope. J Cell Biol 125:547–555.

    PubMed  CAS  Google Scholar 

  2. Adam SA, Gerace L. 1991. Cytosolic proteins that specifically bind nuclear localization signals are receptors for nuclear import. Cell 66:837–847.

    PubMed  CAS  Google Scholar 

  3. Akner G, Mossberg K, Sundquist K-G, Gustafsson J-A, Wikstrom A-C. 1992. Evidence for reversible, non-microtubule and non-microfilament-dependent nuclear translocation of HSP 90 after heat shock in human fibroblasts. European Journal of Cell Biology 58:356–364.

    PubMed  CAS  Google Scholar 

  4. Aligue R, Akhavan-Niak H, Russell P. 1994. A role for HSP 90 in cell cycle control: Weel tyrosine kinase activity requires interaction with HSP 90. Embo 13:6099–6106.

    CAS  Google Scholar 

  5. Baeuerle PA, Baltimore D. 1988. IkB: A specific inhibitor of the NF-kB transcription factor. Science 242:540–544.

    PubMed  CAS  Google Scholar 

  6. Beck SC, De Maio A. 1994. Stabilization of protein synthesis of thermotolerant cells during heat shock: Association of heat shock protein-72 with ribosomal subunits of polysomes. J BiolChem 269:21803–21811.

    CAS  Google Scholar 

  7. Beckmann RP, Mizzen LA, Welch WJ. 1990. Interaction of HSP 70 with newly synthesized proteins: Implications for protein folding and assembly. Science 248:850–854.

    PubMed  CAS  Google Scholar 

  8. Benjamin IJ, Kroger B, Williams RS. 1990. Activation of the heat shock transcription factor by hypoxia in mammalian cells. ProcNatlAcadSci USA 87:6263–6267.

    CAS  Google Scholar 

  9. Benjamin IJ, Horie S, Greenberg ML, Alpern RJ, Williams RS. 1992. Induction of stress proteins in cultured myogenic cells: Molecular signals for the activation of heat shock transcription factor during ischemia. JClinInvest 89:1685–1689.

    CAS  Google Scholar 

  10. Beretz A, Anton R, Stoclet JC. 1978. Flavanoid compounds are potent inhibitors of cyclic AMP phosphodiesterase. Experientia 34:1054–1055.

    PubMed  CAS  Google Scholar 

  11. Black AR, Subjeck JR. 1989. Involvement of rRNA synthesis in the enhanced survival and recovery of protein synthesis seen in thermotolerance. JCellPhysiol 138:439–449.

    CAS  Google Scholar 

  12. Chen J-J, London IM. 1995. Regulation of protein synthesis by heme-regulated eIF-2α kinase. TIBS 20:105–108.

    PubMed  CAS  Google Scholar 

  13. Chen S, Prapapanich V, Rimerman RA, Honoré B, Smith DF. 1996. Interactions of p60, a mediator of progesterone receptor assembly with heat shock proteins HSP90 and HSP70. MolEndocrin 10:682–693.

    CAS  Google Scholar 

  14. Cheng MY, Hartl F-U, Martin J, et al. 1989. Mitochondrial heat-shock protein HSP60 is essentialfor assembly of proteins imported into yeast mitochondria. Nature 337:620–625.

    PubMed  CAS  Google Scholar 

  15. Chiesi M, Schwaller R. 1995. Inhibition of constitutive endothelial NO-synthase activity by tannin and quercetin. BiochemPharmacol 49:495–501.

    CAS  Google Scholar 

  16. Ciechanover A, Schwartz AL. 1994. The ubiquitin-mediated proteolytic pathway: mechanisms of recognition of the proteolytic substrate and involvement in the degradation of native cellular proteins. FASEB J 8:182–191.

    PubMed  CAS  Google Scholar 

  17. Ciocca DR, Oesterreich S, Chamness GC, McGuire WL, Fuqua SAW. 1993. Biological and clinical implications of heat shock protein 27000 (Hsp27): a Review. JNatlCancer Inst 85:1558–1570.

    CAS  Google Scholar 

  18. Cotto JJ, Kline M, Morimoto RI. 1996. Activation of heat shock factor 1 DNA binding precedes stress-induced serine phosphorylation. JBiolChem 271:3355–3358.

    CAS  Google Scholar 

  19. Dang CV, Lee WMF. 1989. Nuclear and nucleolar targeting sequences of c-erb-A, c-myb, N-myc, p53, HSP 70, and HIV tat proteins. JBiolChem 264:18019–18023.

    CAS  Google Scholar 

  20. Duarte J, Perez-Vizcaino F, Zarzuelo A, Jimenez J, Tamargo J. 1993. Vasodilator effects of quercetin in isolated rat vascular smooth muscle. European J Pharmacol 239:1–7.

    CAS  Google Scholar 

  21. Ellis RJ, ed. The Chaperonins. New York: Academic Press, 1996.

    Google Scholar 

  22. Faulds GB, Isenberg DA, Latchman DS. 1994. The tissue specific elevation in synthesis of the 90 kDa heat shock protein precedes the onset of disease in lupus prone MRL/lpr mice. JRheumatol 21:234–238.

    CAS  Google Scholar 

  23. Fourie AM, Sambrook JF, Gething M-JH. 1994. Common and divergent peptide binding specificities of HSP 70 molecular chaperones. JBiolChem 269:30470–30478.

    CAS  Google Scholar 

  24. Freeman BC, Morimoto RI. 1996. The human cytosolic molecular chaperones HSP90, HSP70 (HSC70) and HDJ-1 have distinct roles in recognition of a non-native protein and protein refolding. Embo 15:2969-2979.

    CAS  Google Scholar 

  25. Frydman J, Nimmesgern E, Ohtsuka K, Hartl FU. 1994. Folding of nascent polypeptide chains in a high molecular mass assembly with molecular chaperones. Nature 370:111–117.

    PubMed  CAS  Google Scholar 

  26. Gething M, Sambrook J. 1992. Protein folding in the cell. Nature 235:33–45.

    Google Scholar 

  27. Giardina C, Lis JT. 1995. Sodium salicylate and yeast heat shock gene transcription. JBiolChem 270:10369–10372.

    CAS  Google Scholar 

  28. Gu ZL, Xiao D, Jin LQ, Fans PS, Qian ZN. 1994. Effects of quercetin on Na+/K+-exchanging ATPase and Ca+2/Mg+2 ATPase in rats. Chung-Kuo Yao Li Hsueh Pao — Acta Pharmacologica Sinica 15:414–416.

    CAS  Google Scholar 

  29. Guiochon-Mantel A, Delabre K, Lescop P, Milgrom E. 1994. Nuclear localization signals also mediate the outward movement of proteins from the nucleus. J Cell Biol 91:7179–7183.

    CAS  Google Scholar 

  30. Gutierrez JA, Guerriero J V. 1995. Relative abundance of bovine HSP 70 mRNA and protein. Biochimica et Biophysica Acta 1260:239–242.

    PubMed  Google Scholar 

  31. Gutierrez JA, Guerriero V Jr. 1991. Quantitation of HSP 70 in tissues using a competitive enzyme-linked immunosorbent assay. Journal of Immunological Methods 143:81–88.

    PubMed  CAS  Google Scholar 

  32. Hartl FU. 1996. Molecular chaperones in cellular protein folding. Nature 381:571–580.

    PubMed  CAS  Google Scholar 

  33. Hartson SD, Matts RL. 1994. Association of HSP 90 with cellular Src-family kinases in a cell-free system correlates with altered kinase structure and function. Biochemistry 33:8912–8920.

    PubMed  CAS  Google Scholar 

  34. Hayes SA, Dice JF. 1996. Roles of molecular chaperones in protein degradation. J Cell Biol 132:255–258.

    PubMed  CAS  Google Scholar 

  35. Heads RJ, Yellon DM, Latchman DS. 1995. Differential cytoprotection against heat stress or hypoxia following expression of specific stress protein genes in myogenic cells. J Mol Cell Cardiol 27:1669–1678.

    PubMed  CAS  Google Scholar 

  36. Hegde RS, Zuo J, Voellmy R, Welch WJ. 1995. Short circuiting stress protein expression via a tyrosine kinase inhibitor, Herbimycin A. JCellPhysiol 165:186–200.

    CAS  Google Scholar 

  37. Hendrick JP, Hartl FU. 1993. Molecular chaperone functions of heat shock proteins. AnnuRevBiochem 62:349–384.

    CAS  Google Scholar 

  38. Hendrick JP, Hartl F-U. 1995. The role of molecular chaperones in protein folding. FASEB J 9:1559–1569.

    PubMed  CAS  Google Scholar 

  39. Heydari AR, Conrad CC, Richardson A. 1995. Expression of heat shock genes in hepatocytes is affected by age and food restriction in rats. JNutr 125:410–418.

    CAS  Google Scholar 

  40. Hodwick WF, Duval DL, Pardini RS. 1994. Inhibition of mitochondrial respiration and cyanide-stimulated generation of reactive oxygen species by selected flavanoids. BiochemPharmacol 47:573–580.

    Google Scholar 

  41. Hutchison KA, Scherrer LC, Czar MJ, et al. 1993. Regulation of glucocorticoid receptor function through assembly of a receptor-heat shock protein complex. Ann NY AcadSci 684:35–48.

    CAS  Google Scholar 

  42. Hutchison KA, Dittmar KD, Czar MJ, Pratt WB. 1994. Proof that HSP70 is required for assembly of the glucocorticoid receptor into a herocomplex with HSP90. JBiolChem 269:5043–5049.

    CAS  Google Scholar 

  43. Hutchison KA, Stancato LF, Owens-Grillo JK, et al. 1995. The 23-kDa acidic protein in reticulocyte lysate is the weakly bound component of the HSP foldosome that is required for assembly of the glucocorticoid receptor into a functional heterocomplex with HSP90. JBiolChem 270:18841–18847.

    CAS  Google Scholar 

  44. Imamoto N, Matsuoka Y, Kurihara T, et al. 1992. Antibodies against 70-kD heat shock cognate protein inhibit mediated nuclear import of karyophilic proteins. J Cell Biol 119:1047–1061.

    PubMed  CAS  Google Scholar 

  45. Imamoto N, Tachibana T, Matsubae M, Yoneda Y. 1995. A karyophilic protein forms a stable complex with cytoplasmic components prior to nuclear pore binding. JBiolChem 270:8559–8565.

    CAS  Google Scholar 

  46. Imamoto-Sonobe N, Matsuoka Y, Semba T, Okada Y, Uchida T, Yoneda Y. 1990. A protein recognized by antibodies to Asp-Asp-Asp-Glu-Asp shows specific binding activity to heterogeneous nuclear transport signals. JBiolChem 265:16504–16508.

    CAS  Google Scholar 

  47. Inaguma Y, Goto S, Shinohara H, Hasegawa K, Ohshima K, Kato K. 1993. Physiological and pathological changes in levels of the two small stress proteins, HSP 27 and αB crystallin, in rat hindlimb muscles. JBiochem 114:378–384.

    CAS  Google Scholar 

  48. Iwaki K, Chi S, Dillmann WH, Mestril R. 1993. Induction of HSP 70 in cultured rat neonatal cardiomyocytes by hypoxia and metabolic stress. Circulation 87:2023–2032.

    PubMed  CAS  Google Scholar 

  49. Izumoto S, Herbert J. 1993. Widespread constitutive expression of HSP 90 messenger RNA in rat brain. Journal of Neuroscience Research 35:20–28.

    PubMed  CAS  Google Scholar 

  50. Johnson J, Toft DO. 1995. Binding of p23 and hsp 90 during assembly with the progesterone receptor. MolEndocrin 9:670–678.

    CAS  Google Scholar 

  51. Jurivich DA, Sistonen L, Kroes RA, Morimoto RI. 1992. Effect of sodium salicylate on the human heat shock response. Science 255:1243–1245.

    PubMed  CAS  Google Scholar 

  52. Jurivich DA, Pachetti C, Qiu L, Welk JF. 1995. Salicylate triggers heat shock factor differently than heat. JBiolChem 270:24489–24495.

    CAS  Google Scholar 

  53. Knowlton AA, Brecher P, Apstein CS. 1991. Rapid expression of heat shock protein in the rabbit after brief cardiac ischemia. JClinInvest 87:139–147.

    CAS  Google Scholar 

  54. Lang DR, Racker E. 1974. Effects of quercetin and F1 inhibitor on mitochondrial ATPase and energy-linked reactions in submitochondrial particles. Biochimica et Biophysica Acta 333:180–186.

    PubMed  CAS  Google Scholar 

  55. Langer T, Lu C, Echols H, Flanagan J, Hayer MK, Hartl FU. 1992. Successive action of DnaK, DnaJ and GroEL along the pathway of chaperone-mediated protein folding. Nature 356:683–689.

    PubMed  CAS  Google Scholar 

  56. Laszlo A. 1988. The relationship of heat-shock proteins, thermotolerance, and protein synthesis. Exp Cell Res 178:401–414.

    PubMed  CAS  Google Scholar 

  57. Latchman DS, Isenberg DA. 1994. The role of HSP90 in SLE. Autoimmunity 19:211–218.

    PubMed  CAS  Google Scholar 

  58. Laughton MJ, Halliwell B, Evans PJ, Hoult JRS. 1989. Antioxidant and pro-oxidant actions of the plant phenolics quercetin, gossypol and myricetin. BiochemPharmacol 38:2859–2865.

    CAS  Google Scholar 

  59. Lepock JR, Frey HE, Ritchie KP. 1993. Protein denaturation in intact hepatocytes and isolated cellular organelles during heat shock. J Cell Biol 122:1267–1276.

    PubMed  CAS  Google Scholar 

  60. Lindahl M, Tagesson C. 1993. Selective inhibition of group II phospholipase A2 by quercetin. Inflammation 17:573–582.

    PubMed  CAS  Google Scholar 

  61. Lindquist S. 1981. Regulation of protein synthesis during heat shock. Nature 293:311–314.

    PubMed  CAS  Google Scholar 

  62. Locke M, Tanguay RM, Ianuzzo CD. 1996. Constitutive expression of HSP 72 in swine heart. J Mol Cell Cardiol 28:467–474.

    PubMed  CAS  Google Scholar 

  63. Marcinkiewicz C, Galasinski W, Gindzienski A 1995. EF-1α is a target site for an inhibitory effect of quercetin in the peptide elongation process. Acta Biochimica Polonica 42:347–350.

    PubMed  CAS  Google Scholar 

  64. Matts RL, Hurst R. 1992. The relationship between protein synthesis and heat shock protein levels in rabbit reticulocyte lysates. JBiolChem 267:18168–18174.

    CAS  Google Scholar 

  65. Matts RL, Xu Z, Pal JK, Chen J. 1992. Interactions of the heme-regulated eIF-2α kinase with heat shock proteins in rabbit reticulocyte lysates. JBiolChem 267:18160–18167

    CAS  Google Scholar 

  66. Mayhew M, da Silva ACR, Martin J, Erdjument-Bromage H, Tempst P, Hartl FU. 1996. Protein folding in the central cavity of the GroEL-GroES chaperonin complex. Nature 329:420–426.

    Google Scholar 

  67. Menon V, Thomason DB. 1995. Head-down tilt increases rat cardiac muscle eIF-2α phosphorylation. Am J Physiol 269:C802–C804.

    PubMed  CAS  Google Scholar 

  68. Milarski KL, Morimoto RI. 1989. Mutational analysis of the human HSP70 protein: Distinct domains for nucleolar localization and adenosine triphosphate binding. J Cell Biol 109:1947–1962.

    PubMed  CAS  Google Scholar 

  69. Mimnaugh EG, Worland PJ, Whitesell L, Neckers LM. 1995. Possible role for serine/threonine phosphorylation in the regulation of the heteroprotein complex between the HSP90 stress protein and the pp60vsrc tyrosine kinase. JBiolChem 270:28654–28659.

    CAS  Google Scholar 

  70. Miyata Y, Yahara I. 1995. Interaction between casein kinase II and the 90-kDa stress protein, HSP 90. Biochemistry 34:8123–8129.

    PubMed  CAS  Google Scholar 

  71. Mizzen LA, Welch WJ. 1988. Characterization of the thermotolerant cell. I. Effects on protein synthesis activity and the regulation of heat-shock protein 70 expression. J Cell Biol 106:1105–1116.

    PubMed  CAS  Google Scholar 

  72. Morris SD, Cumming DVE, Latchman DS, Yellon DM. 1996. Specific induction of the 70-kD heat stress proteins by the tyrosine kinase inhibitor herbimycin-A protects rat neonatal cardiomyocytes. JClinInvest 97:706–712.

    CAS  Google Scholar 

  73. Munro S, Pelham HRB. 1984. Use of peptide tagging to detect proteins expressed from cloned genes: deletion mapping functional domains of drosophila HSP 70. Embo 3:3087–3093.

    CAS  Google Scholar 

  74. Nakai A, Morimoto RI. 1993. Characterization of a novel chicken heat shock transcription factor, heat shock factor 3, suggests a new regulatory pathway. MolCellBiol 13:1983–1997.

    CAS  Google Scholar 

  75. Nakano M, Mann DL, Knowlton AA. 1997. Blocking the endogenous increase in HSP72 increases susceptibility to hypoxia and reoxygenation injury in isolated adult feline cardiocytes. Circulation, in press.

    Google Scholar 

  76. Nathan DF, Lindquist S. 1995. Mutational analysis of HSP 90 function: Interactions with a steroid receptor and a protein kinase. MolCellBiol 15:3917–3925.

    CAS  Google Scholar 

  77. Nicchitta CV, Blobel G. 1993. Lumenal proteins of the mammalian endoplasmic reticulum are required to complete protein translocation. Cell 73:989–998.

    PubMed  CAS  Google Scholar 

  78. Ohtsuka K. 1993. Cloning of a cDNA for heat-shock proein HSP 40, a human homologue of bacterial DnaJ. BiochemBiophysResCommun 197:235–240.

    CAS  Google Scholar 

  79. Ohtsuka K, Laszlo A. 1992. The relationship between HSP 70 localization and heat resistance. Exp Cell Res 202:507–518.

    PubMed  CAS  Google Scholar 

  80. Pace-Asciak CR, Hahn S, Diamandis EP, Soleas G, Goldberg DM. 1995. The red wine phenolics trans-resveratrol and quercetin block human platelet aggregation and eicosanoid synthesis: implications for protection against coronary artery disease. Clinica Chimica Acta 235:207–219.

    CAS  Google Scholar 

  81. Parsell DA, Lindquist S. 1993. The function of heat-shock proteins in stress tolerance: Degradation and reactivation of damaged proteins. AnnuRevGenet 27:437–496.

    CAS  Google Scholar 

  82. Parsell DA, Sanchez Y, Stitzel JD, Lindquist S. 1991. HSP 104 is a highly conserved protein with two essential nucleotide-binding sites. Nature 353:270–273.

    PubMed  CAS  Google Scholar 

  83. Parsell DA, Taulien J, Lindquist S. 1993. The role of heat-shock proteins in thermotolerance. Philosophical Transactions of the Royal Society of London Series B — Biological Sciences 339:279–284.

    CAS  Google Scholar 

  84. Quraishi H, Rush SJ, Brown IR. 1996. Expression of mRNA species encoding heat shock protein 90 (HSP90) in control and hyperthermic rat brain. Journal of Neuroscience Research 43:335–345.

    PubMed  CAS  Google Scholar 

  85. Rabindran SK, Haroun RI, Clos J, Wisniewski J, Wu C. 1993. Regulation of heat shock factor trimer formation: Role of a conserved leucine zipper. Science 259:230–234.

    PubMed  CAS  Google Scholar 

  86. Richter JD, Standiford D. Structure and regulation of nuclear localization signals. In: Feldherr CM, ed. Nuclear Trafficking. New York: Academic Press, 1992:90–121.

    Google Scholar 

  87. Rommelaere H, Van Troys M, Gao Y, et al. 1993. Eukaryotic cytosolic chaperonin contains t-complex polypeptide 1 and seven related subunits. ProcNatlAcadSci USA 90:11975–11979.

    CAS  Google Scholar 

  88. Sadoshima J, Jahn L, Takahashi T, Kulik TJ, Izumo S. 1992. Molecular characterization of the stretch-induced adaption of cultured cardiac cells. JBiolChem 267:10551–10560.

    CAS  Google Scholar 

  89. Salfity MR, Knowlton AA 1995. Site-directed mutagenesis of a highly conserved nuclear localization sequence in human HSP 72. J Cell Biochem 19B:204 (ABST.).

    Google Scholar 

  90. Sanchez Y, Lindquist SL. 1990. HSP 104 required for induced thermotolerance. Science 248:1112–1115.

    PubMed  CAS  Google Scholar 

  91. Scherrer LC, Picard D, Massa E, et al. 1993. Evidence that the hormone binding domain of steroid receptors confers hormonal control on chirmeric proteins by determining their hormone-regulated binding to heat-shock protein 90. Biochemistry 32:5381–5386.

    PubMed  CAS  Google Scholar 

  92. Schröder H, Langer T, Hartl F, Bukau B. 1993. DnaK, DnaJ and GrpE form a cellular chaperone machinery capable of repairing heat-induced protein damage. Embo 12:4137–4144.

    Google Scholar 

  93. Shi Y, Thomas JO. 1992. The transport of proteins into the nucleus requires the 70-kilodalton heat shock protein or its cytosolic cognate. MolCellBiol 12:2186–2192.

    CAS  Google Scholar 

  94. Shue G, Kohtx DS. 1994. Structural and functional aspects of basic helix-loop-helix protein folding by heat-shock protein 90. JBiolChem 269:2707–2711.

    CAS  Google Scholar 

  95. Shyy T-T, Subjeck JR, Heinaman R, Anderson G. 1986. Effect of growth state and heat shock on nucleolar localization of the 110,000 Da heat shock protein in mouse embryo fibroblasts. Cancer Research 46:4738–4745.

    PubMed  CAS  Google Scholar 

  96. Simons SS Jr. 1994. Function/activity of specific amino acids in glucocorticoid receptors. Vitamins and Hormones 49:49–130.

    PubMed  CAS  Google Scholar 

  97. Siomi H, Dreyfuss G. 1995. A nuclear localization domain in the hnRNP Al protein. J Cell Biol 129:551–560.

    PubMed  CAS  Google Scholar 

  98. Sistonen L, Sarge KD, Philips B, Abravaya K, Morimoto RI. 1992. Activation of heat shock factor 2 (HSF2) during hemin-induced differentiation of human erythroleukemia cells. MolCellBiol 12:4104–4111.

    CAS  Google Scholar 

  99. Skowyra D, Georgopoulos C, Zylicz M. 1990. The E. coli dnaK gene product, the HSP70 homolog, can reactivate heat-inactivated RNA polymerase in an ATP hydrolysis-dependent manner. Cell 62:939–944.

    PubMed  CAS  Google Scholar 

  100. Stancato LF, Chow Y, Hutchison KA, Perdew GH, Jove R, Pratt WB. 1993. Raf exists in a native heterocomplex with HSP 90 and p50 that can be reconstituted in a cell-free system. JBiolChem 268:21711–21716.

    CAS  Google Scholar 

  101. Subjeck JR, Shyy T, Shen J, Johnson RJ. 1983. Association between the mammalian 110,000-dalton heat-shock proein and nucleoli. J Cell Biol 97:1389–1395.

    PubMed  CAS  Google Scholar 

  102. Sugito K, Yamane M, Hattori H, et al. 1995. Interaction between HSP 70 and HSP 40, eukaryotic homologues of DnaK and DnaJ, in human cells expressing mutant-type p53. FEBS Letters 358:161–164.

    PubMed  CAS  Google Scholar 

  103. Theodorakis NG, Morimoto RI. 1987. Posttranscriptional regulation of HSP 70 expression in human cells: Effects of heat shock, inhibition of protein synthesis, and adenovirus infection on translation and mRNA stability. MolCellBiol 7:4357–4368.

    CAS  Google Scholar 

  104. Ting L-P, Tu C-L, Chou C-K. 1989. Insulin induced expression of human heat-shock protein gene HSP 70. JBiolChem 264:3404–3408.

    CAS  Google Scholar 

  105. Vogel JP, Misra LM, Rose MD. 1990. Loss of BiP/GRP78 function blocks translocation of secretory proteins in yeast. J Cell Biol 110:1885–1895.

    PubMed  CAS  Google Scholar 

  106. Watowich SS, Morimoto RI. 1988. Complex regulation of heat shock- and glucose-responsive genes in human cells. MolCellBiol 8:393–405.

    CAS  Google Scholar 

  107. Weis K, Mattaj IW, Lamond AI. 1995. Identification of hSRP1α as a functional receptor for nuclear localization sequences. Science 268:1049–1053.

    PubMed  CAS  Google Scholar 

  108. Weissman JS, Hohl CM, Kovalenko O, et al. 1995. Mechanism of GroEL action: Productive release of polypeptide from a sequestered position under GroES. Cell 83:577–587.

    PubMed  CAS  Google Scholar 

  109. Welch WJ, Feramisco JR. 1984. Nuclear and nucleolar localization of the 72,000-dalton heat shock protein in heat-shocked mammalian cells. JBiolChem 259:4501–4513.

    CAS  Google Scholar 

  110. Welch WJ, Mizzen LA. 1988. Characterization of the thermotolerant cell. II. Effects on the intracellular distribution of heat-shock protein 70, intermediate filaments, and small nuclear ribonucleoprotein complexes. J Cell Biol 106:1117–1130.

    PubMed  CAS  Google Scholar 

  111. Westwood JT, Wu C. 1991. Stress-induced oligomerization and chromosomal relocalization of heat-shock factor. Nature 353:822–827.

    PubMed  CAS  Google Scholar 

  112. Whalen AM, Steward R. 1993. Dissociation of the dorsal-cactus complex and phosphorylation of the dorsal protein correlate with the nuclear localization of dorsal. J Cell Biol 123:423–534.

    Google Scholar 

  113. Whitesell L, Mimnaugh EG, De Costa B, Myers CE, Neckers LM. 1994. Inhibition of heat shock protein HSP90-pp60v-serc heteroprotein complex formation by benzoquinone ansamycins: Essential role for stress proteins in oncogenic transformation. ProcNatlAcadSci USA 91:8324–8328.

    CAS  Google Scholar 

  114. Wilkinson JM, Pollard I. 1993. Immunohistochemical localisation of the 25 kDa heat shock protein in unstressed rats. Anat Rec 237:453–457.

    PubMed  CAS  Google Scholar 

  115. Williams RS, Thomas JA, Fina M, German Z, Benjamin IJ. 1993. Human heat shock protein 70 (HSP 70) protects murine cells from injury during metabolic stress. JClinInvest 92:503–508.

    CAS  Google Scholar 

  116. Xia P, Culp LA. 1995. Adhesion activity in fibronectin’s alternatively spliced domain EDa(EIIIA): Complementatiry to plasma fibronectin functions. Exp Cell Res 217:517–527.

    PubMed  CAS  Google Scholar 

  117. Xu Y, Lindquist S. 1993. Heat-shock protein HSP 90 governs the activity of pp60v-src kinase. ProcNatlAcadSci USA 90:7074–7078.

    CAS  Google Scholar 

  118. Yang J, DeFranco DB. 1994. Differential roles of heat shock protein 70 in the in vitro nuclear import of glucocorticoid receptor and Simian virus 40 large tumor antigen. MolCellBiol 14:5088–5098.

    CAS  Google Scholar 

  119. Zhao Y, Chacko S, Levin RM. 1994. Expression of stress proteins (HSP-70 and HSP-90) in the rabbit urinary bladder subjected to partial outlet obstruction. MolCellBiochem 130:49–55.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Knowlton, A.A. (1997). An Overview of the Heat Shock Proteins, Their Regulation, and Function. In: Knowlton, A.A. (eds) Heat Shock Proteins and the Cardiovascular System. Developments in Cardiovascular Medicine, vol 192. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6177-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6177-4_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7832-7

  • Online ISBN: 978-1-4615-6177-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics