Skip to main content

Fluxes through cytosolic and mitochondrial creatine kinase, measured by P-31 NMR

  • Chapter
  • 324 Accesses

Part of the book series: Developments in Molecular and Cellular Biochemistry ((DMCB,volume 21))

Abstract

The kinetic properties of the cytoplasmic and the mitochondrial iso-enzymes of creatine kinase from striated muscle were studied in vitro and in vivo. The creatine kinase (CK) iso-enzyme family has a multi-faceted role in cellular energy metabolism and is characterized by a complex pattern of tissue-specific expression and subcellular distribution. In mammalian tissues, there is always co-expression of at least two different CK isoforms. As a result, previous studies into the role of CK in energy metabolism have not been able to directly differentiate between the individual CK species. Here, we describe experiments which were directed at achieving this goal. First, we studied the kinetic properties of the muscle-specific cytoplasmic and mitochondrial CK isoforms in purified form under in vitro conditions, using a combination of P-31 NMR and spectrophotometry. Secondly, P-31 NMR measurements of the flux through the CK reaction were carried out on intact skeletal and heart muscle from wild-type mice and from transgenic mice, homozygous for a complete deficiency of the muscle-type cytoplasmic CK isoform. Skeletal muscle and heart were compared because they differ strongly in the relative abundance of the CK isoforms. The present data indicate that the kinetic properties of cytoplasmic and mitochondrial CK are substantially different, both in vitro and in vivo. This finding particularly has implications for the interpretation of in vivo studies with P-31 NMR. (Mol Cell Biochem 174: 33–42, 1997)

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wallimann T, Wyss M, Brdiczka D, Nicolay K, Eppenberger HM: Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the ‘phosphocreatine circuit’ for cellular energy homeostasis. Biochem J 281:21–40, 1992

    PubMed  CAS  Google Scholar 

  2. Wyss M, Smeitink J, Wevers RA, Wallimann T: Mitochondrial creatine kinase: a key enzyme in aerobic energy metabolism. Biochim Biophys Acta 1102: 119–166, 1992

    Article  PubMed  CAS  Google Scholar 

  3. Wallimann T: Dissecting the role of creatine kinase. Current Biol 1: 42–46, 1994

    Article  Google Scholar 

  4. Rojo M, Hovius RC, Demel R, Nicolay K, Wallimann T: Mitochondrial creatine kinase mediates contact formation between mitochondrial membranes. J Biol Chem 266: 20290–20295, 1991

    PubMed  CAS  Google Scholar 

  5. Meyer RA, Sweeney HL, Kushmerick MJ: A simple analysis of the phosphocreatine shuttle. Am J Physiol 246: C365–C377, 1984

    PubMed  CAS  Google Scholar 

  6. Radda GK: Control, bionergetics and adaptation in health and disease: noninvasive biochemistry from nuclear magnetic resonance. FASEB J 6: 3032–3038, 1992

    PubMed  CAS  Google Scholar 

  7. Schaefer S, Balaban RS: Cardiovascular Magnetic Resonance Spectroscopy. Kluwer Academic Publishers, Boston, 1992

    Google Scholar 

  8. Lawson JWR, Veech R: Effects of pH and free Mg2+ on the Kcq of the creatine kinase reaction and other phosphate hydrolysis and phosphate transfer reactions. J Biol Chem 254: 6528–6537, 1979

    PubMed  CAS  Google Scholar 

  9. Veech RL, Lawson JWR, Cornell NW, Krebs HA: Cytosolic phos-phorylation potential. J Biol Chem 254: 6538–6547, 1979

    PubMed  CAS  Google Scholar 

  10. Van Dorsten FA, Furter R, Bijkerk M, Wallimann T, Nicolay K: The in vitro kinetics of mitochondrial and cytosolic creatine kinase determined by saturation transfer 31P NMR. Biochim Biophys Acta 1274: 59–66, 1996

    Article  PubMed  Google Scholar 

  11. Furter R, Kaldis P, Furter-Graves EM, Schnyder T, Eppenberger HM, Wallimann T: Expression of active, octameric chicken cardiac mitochondrial creatine kinase in Escherichia coli. Biochem J 288: 771–775, 1992

    PubMed  CAS  Google Scholar 

  12. Van Deursen J, Heerschap A, Oerlemans F, Ruitenbeek W, Jap P, Ter Laak H, Wieringa B: Skeletal muscles of mice deficient in muscle creatine kinase lack burst activity. Cell 74: 621–631, 1993

    Article  PubMed  Google Scholar 

  13. Morrison JF, Cleland WW: Isotope exchange studies of the mechanism of the reaction catalyzed by adenosine triphosphate: creatine phosphotransferase. J Biol Chem 241: 673–683, 1966

    PubMed  CAS  Google Scholar 

  14. Van Deursen J, Ruitenbeek W, Heerschap A, Jap P, Ter Laak H, Wieringa B: Creatine kinase in skeletal muscle metabolism: a study of mouse mutants with graded reduction in M-CK expression. Proc Natl Acad Sci USA 91: 9091–9095, 1994

    Article  PubMed  Google Scholar 

  15. Forsén S, Hoffman RA: Study of moderately rapid chemical exchange reactions by means of nuclear magnetic double resonance. J Chem Phys 39:2892–2901, 1963

    Article  Google Scholar 

  16. Bittl JA, Ingwall JS: Reaction rates of creatine kinase and ATP synthesis in the isolated heart. J Biol Chem 260: 3512–3517, 1985

    PubMed  CAS  Google Scholar 

  17. Brindle KM: NMR methods for measuring enzyme kinetics. Progress in NMR Spectroscopy 20: 257–293, 1988

    Article  CAS  Google Scholar 

  18. Kaldis P, Wallimann T: Functional differences between dimeric and octameric mitochondrial creatine kinase. Biochem J 308: 623–627, 1995

    PubMed  CAS  Google Scholar 

  19. Van Deursen JMA: The role of the creatine kinase/phosphocreatine system studied by gene targeting. Thesis, Nijmegen University, Nijmegen, 1994

    Google Scholar 

  20. Steeghs KGJ: Consequences of creatine kinase deficiencies in mice. Thesis, Nijmegen University, Nijmegen, 1995

    Google Scholar 

  21. Koretsky AP, Basus VJ, James TL, Klein MP, Weiner MW: Detection of exchange reactions involving small metabolise pools using NMR magnetization transfer techniques: relevance to subcellular compartmentation of creatine kinase. Magn Reson Med 2: 586–594, 1985

    Article  PubMed  CAS  Google Scholar 

  22. Van Dorsten FA, Nederhoff MGH, Nicolay K, Van Echteid CJA: 31P NMR saturation transfer measurements of creatine kinase flux in wild-type and MM-CK deficient Langendorff perfused mouse hearts. Proc 4th Scientific Meeting Int Soc Magn Reson Med, New York, 1996, p. 432

    Google Scholar 

  23. McFarland EW, Kushmerick MJ, Moerland TS: Activity of creatine kinase in a contracting mammalian muscle of uniform fiber type. Biophys J 67: 1912–1924, 1994

    Article  PubMed  CAS  Google Scholar 

  24. Zahler R, Bittl JA, Ingwall JS: Analysis of compartmentation of ATP in skeletal and cardiac muscle using 31P nuclear magnetic resonance saturation transfer. Biophys J 51: 883–893, 1987

    Article  PubMed  CAS  Google Scholar 

  25. Zahler R, Ingwall JS: Estimation of heart mitochondrial creatine kinase flux using magnetization transfer NMR spectroscopy. Am J Physiol 262: H1022–H1028, 1992

    PubMed  CAS  Google Scholar 

  26. Neubauer S, Hamman BL, Perry SB, Bittl JA, Ingwall JS: Velocity of the creatine kinase reaction decreases in postischemic myocardium: a 31P-NMR magnetization transfer study of the isolated ferret heart. Circ Res 63: 1–15, 1988

    Article  PubMed  CAS  Google Scholar 

  27. Ventura-Clappier R, Kuznetsov AV, D’Albis A, Van Deursen J, Wieringa B, Veksler VI: Muscle creatine kinase-deficient mice. I. Alterations in myofibrillar function. J Biol Chem 270:19914–19920, 1995

    Article  Google Scholar 

  28. Veksler VI, Kuznetsov AV, Anflous K, Mateo P, Van Deursen J, Wieringa B, Ventura-Clappier R: Muscle creatine kinase-deficient mice. II. Cardiac and skeletal muscles exhibit tissue-specific adaptation of the mitochondrial function. J Biol Chem 270: 19914–19920, 1995

    Article  PubMed  Google Scholar 

  29. Masuda T, Dobson GP, Veech RL: The Gibbs-Donnan near-equilibrium system of the heart. J Biol Chem 265: 20321–20334, 1990

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

van Dorsten, F.A. et al. (1997). Fluxes through cytosolic and mitochondrial creatine kinase, measured by P-31 NMR. In: Gellerich, F.N., Zierz, S. (eds) Detection of Mitochondrial Diseases. Developments in Molecular and Cellular Biochemistry, vol 21. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6111-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6111-8_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7800-6

  • Online ISBN: 978-1-4615-6111-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics