Skip to main content

On Smooth Activation Functions

  • Chapter

Part of the Operations Research/Computer Science Interfaces Series book series (ORCS,volume 8)

Abstract

We had earlier constructed neural networks which are capable of providing optimal approximation rates for smooth target functions. The activation functions evaluated by the principal elements of these networks were infinitely many times differentiable. In this paper, we prove that the parameters of any network with these two properties must satisfy certain lower bounds. Our results can also be thought of as providing a rudimentary test for the hypothesis that the unknown target function belongs to a Sobolev class.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. K. Chui and X. Li, Approximation by ridge functions and neural networks with one hidden layer, J. Approx. Theory, Vol. 70 (1992), pp.131–141.

    CrossRef  MathSciNet  MATH  Google Scholar 

  2. G. Cybenko, Approximation by superposition of sigmoidal functions, Mathematics of Control, Signal and Systems, Vol. 2 (1989), pp.303–314.

    CrossRef  MathSciNet  MATH  Google Scholar 

  3. R. DeVore, R. Howard, and C. A. Micchelli, Optimal nonlinear approximation, Manuscripta Mathematica, Vol. 63 (1989), pp.469–478.

    CrossRef  MathSciNet  Google Scholar 

  4. F. Girosi, M. Jones, and T. Poggio, Regularization theory and neural networks architectures, Neural Computation, Vol. 7 (1995), pp.219–269.

    CrossRef  Google Scholar 

  5. K. Hornik, M. Stinchcombe, and H. White, Multilayer feedforward networks are universal approximators, Neural Networks, Vol. 2 (1989), pp.359–366.

    CrossRef  Google Scholar 

  6. M. Leshno, V. Lin, A. Pinkus, and S. Schocken, Multilayer feedforward networks with a nonpolynomial activation function can approximate any function, Neural Networks, Vol. 6 (1993), pp.861–867.

    CrossRef  Google Scholar 

  7. H. N. Mhaskar, Neural networks for optimal approximation of smooth and analytic functions, Neural Computation, Vol.8 (1996), pp164–177.

    CrossRef  Google Scholar 

  8. H. N. Mhaskar and C. A. Micchelli, Approximation by superposition of a sigmoidal function and radial basis functions, Advances in Applied Mathematics, Vol. 13 (1992), pp.350–373.

    MathSciNet  MATH  Google Scholar 

  9. H. N. Mhaskar and C. A. Micchelli, Dimension independent bounds on the degree of approximation by neural networks, IBM Journal of Research and Development, Vol. 38 (1994), pp.277–284.

    CrossRef  MATH  Google Scholar 

  10. H. N. Mhaskar and C. A. Micchelli, Degree of approximation by neural and translation networks with a single hidden layer, Advances in Applied Mathematics, Vol. 16 (1995), pp.151–183.

    MathSciNet  MATH  Google Scholar 

  11. H. N. Mhaskar and C. A. Micchelli, How to choose an activation function, in NIPS*6 (J. D. Cowan, G. Tesauro, J. Alspector Eds.), Morgan Kaufmann, 1994, pp.319–326.

    Google Scholar 

  12. A. F. Timan, Theory of Approximation of Functions of a Real Variable, Macmillan Co., New York, 1963.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mhaskar, H.N. (1997). On Smooth Activation Functions. In: Ellacott, S.W., Mason, J.C., Anderson, I.J. (eds) Mathematics of Neural Networks. Operations Research/Computer Science Interfaces Series, vol 8. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6099-9_47

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6099-9_47

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7794-8

  • Online ISBN: 978-1-4615-6099-9

  • eBook Packages: Springer Book Archive