Skip to main content

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 198))

  • 65 Accesses

Abstract

In a review on the biophysics of the mechanoreception, Sachs wrote ten years ago that “mechanoreception is the most widely distributed sensory modality in animals. It subserves the conscious senses of hearing, orientation to local gravity, and touch. It provides the voluntary musculature with information about distension and tension which is required for coordinated movement. It provides the viscera with the ability to sense blood pressure, lung, gut, bladder, and mammary inflation. It may also be used to transduce osmotic pressure: from sex to gas pain mechanoreceptors are there” (1). In the vascular system smooth muscle cells (SMC) and endothelial cells are constantly exposed to mechanical stresses. This overview will focus on the effects of tensile stress and stretch on the arterial wall, and the possible signaling pathways involved in the transduction of the mechanical signal in SMC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sachs F. Biophysics of mechanoreception. Membr Biochem. 1986;6:173–195.

    Article  PubMed  CAS  Google Scholar 

  2. Zarins CK, Bomberger RA, Glagov S. Local effects of stenoses: increased flow velocity inhibits atherogenesis. Circulation. 1981;64:221–227.

    Google Scholar 

  3. Tedgui A, Merval R, Esposito B. Albumin transport characteristics of rat aorta in early phase of hypertension. Circ Res. 1992;71:932–942.

    Article  PubMed  CAS  Google Scholar 

  4. Folkow B. Cardiovascular structural adaptation: its role in the initiation and maintenance of primary hypertension. The fourth Volhard lecture. Clin Sci Mol Med. 1978;55:3S–22S.

    Google Scholar 

  5. Wolinsky H. Response of the rat aortic media to hypertension: Morphological and chemical studies. Circ Res. 1970;26:507–522.

    Article  PubMed  CAS  Google Scholar 

  6. Levy BI, Michel JB, Salzmann JL, Azizi M, Poitevin P, Safar ME, Camilleri JP. Effects of chronic inhibition of converting enzyme on the mechanical and structural properties of arteries in rat. Circ Res. 1988;63:227–239.

    Article  PubMed  CAS  Google Scholar 

  7. Greenwald SE, Berry CL, Ramsey RE. The static mechanical properties and chemical composition of the rat aorta in spontaneously occurring and experimentally induced hypertension: the effect of an anti-hypertensive drug. Br JExp Path. 1985;66:633–642.

    CAS  Google Scholar 

  8. Olivetti G, Anversa P, Melissari M, Loud AV. Morphometry of medial hypertrophy in the rat thoracic aorta. Lab Invest. 1980;42:559–565.

    PubMed  CAS  Google Scholar 

  9. Berry CL, Greenwald SE. Effect of hypertension on the static mechanical properties and chemical composition of the rat aorta. Cardiovasc Res. 1976;10:437–451.

    Article  PubMed  CAS  Google Scholar 

  10. Levy BI, Benessiano I, Poitevin P, Lukin L, Safar M. Systemic arterial compliance in normotensive and hypertensive rats. J Cardiovasc Pharmacol. 1985;7:S28–S32.

    Article  PubMed  CAS  Google Scholar 

  11. Owens GK, Schwartz SM. Alterations in vascular smooth muscle mass in the spontaneously hypertensive rat. Role of cellular hypertrophy, Hyperploidy, and hyperplasia. Circ Res. 1982;51:280–289.

    Article  PubMed  CAS  Google Scholar 

  12. Folkow B. Structural factor in primary and secondary hypertension. Hypertension. 1990;16:89–101.

    Article  PubMed  CAS  Google Scholar 

  13. Mulvany MJ. Vascular growth in hypertension. J Cardiovasc Pharmacol. 1992;20:S7–S11.

    PubMed  Google Scholar 

  14. Laurent S. Arterial wall hypertrophy and stiffness in essential hypertensive patients. Hypertension. 1995;26:355–362.

    Article  PubMed  CAS  Google Scholar 

  15. Girerd X, Mourad JJ, Copie X, Moulin C, Acar C, Safar M, Laurent S. Noninvasive detection of an increased vascular mass in untreated hypertensive patients. Am J Hypertens. 1994;7:1076–1084.

    PubMed  CAS  Google Scholar 

  16. Levy BI, Duriez M, Phillip M, Poitevin P, Michel JB. Effect of chronic dihydropyridine on the large arterial wall of spontaneously hypertensive rats. Circulation. 1994;90:3024–3033.

    Article  PubMed  CAS  Google Scholar 

  17. Mulvany MJ. Structure and function of small arteries in hypertension. J Hypertens. 1990;8:S225–S232.

    CAS  Google Scholar 

  18. Weiss L, Lundgren Y. Chronic antihypertensive drug treatment in young spontaneously hypertensive rats: effects on arterial blood pressure, cardiovascular reactivity and vascular design. Cardiovasc Res. 1978;12:744–751.

    Article  PubMed  CAS  Google Scholar 

  19. Albaladejo P, Bouaziz H, Duriez M, Gohlke P, Levy BI, Safar ME, Benetos A. Angiotensin converting enzyme inhibition prevents the increase in aortic collagen in rats. Hypertension. 1994;23:74–82.

    Article  PubMed  CAS  Google Scholar 

  20. Qiu HY, Valtier B, Sruijker-Boudier HAJ, Levy BI. Mechanical and contractile properties of in situ localized mesenteric arteries in normotensive and spontaneously hypertensive rats. J Pharmacol Toxicol Method. 1995;33:159–170.

    Article  CAS  Google Scholar 

  21. Struijker-Boudier HAJ, Van Eessen H, Fazzi G, DeMey JGR, Qiu HY, Levy BI. Disproportional arterial hypertrophy in hypertensive mREN-2 transgenic rats. Hypertension. 1996;28:779–784.

    Article  PubMed  CAS  Google Scholar 

  22. Osol G. Mechanotransduction by vascular smooth muscle. J Vasc Res. 1995;32:275–292.

    PubMed  CAS  Google Scholar 

  23. Burton AC. On the physical equilibrium of the small blood vessel walls. Am J Physiol. 1951;164:319–329.

    PubMed  CAS  Google Scholar 

  24. Azuma T, Oka S. Mechanical equilibrium of blood vessel walls. Am J Physiol. 1971;221:1310–1318.

    PubMed  CAS  Google Scholar 

  25. Virmani R, Avolio AP, Mergner WJ, Robinowitz M, Herderick EE, Comhill JF, Guo SY, Liu TH, Ou DY, O’Rourke M. Effect of aging on aortic morphology in populations with high and low prevalence of hypertension and atherosclerosis. Comparison between occidental and Chinese communities. Am J Pathol. 1991;139:1119–1129.

    PubMed  CAS  Google Scholar 

  26. Michel JB, Heudes D, Michel O, Poitevin P, Philippe M, Scalbert E, Corman B, Levy BI. Effect of chronic ang I-converting enzyme inhibition on aging processes.II. Large arteries. Am J Physiol. 1994;267:R124–R135.

    PubMed  CAS  Google Scholar 

  27. Crouse JR, Goldbourt U, Evans G, Pinsky J, Sharrett AR, Sorlie P, Riley W, Heiss G. Arterial enlargement in the atherosclerosis risk in communities (ARIC) cohort. In vivo quantification of carotid arterial enlargement. The ARIC Investigators. Stroke. 1994;25:1354–1359.

    Article  PubMed  CAS  Google Scholar 

  28. Kakuta T, Currier JW, Haudenschild CC, Ryan TJ, Faxon DP. Differences in compensatory vessel enlargement, not intimal formation, account for restenosis after angioplasty in the hypercholesterolemic rabbit model. Circulation. 1994;89:2809–2815.

    Article  PubMed  CAS  Google Scholar 

  29. Steinke W, Els T, Hennerici M. Compensatory carotid artery dilatation in early atherosclerosis. Circulation. 1994;89:2578–2581.

    Article  PubMed  CAS  Google Scholar 

  30. Kohler TR, Kirkman TR, Clowes AW. The effect of rigid external support on vein graft adaptation to the arterial circulation. J Vasc Surg. 1989;9:277–285.

    PubMed  CAS  Google Scholar 

  31. Batellier J, Wassef M, Merval R, Duriez M, Tedgui A. Protection from atherosclerosis in vein grafts by a rigid external support. Arterioscler Thromb. 1993;13:379–384.

    Article  PubMed  CAS  Google Scholar 

  32. Stopak D, Harris AK. Connective tissue morphogenesis by fibroblast traction. I. Tissue culture observations. Dev Biol. 1982;90:383–398.

    Article  PubMed  CAS  Google Scholar 

  33. McIntyre TW. An analysis of critical closure in the isolated ductus arteriosus. Biophys J. 1969;9:685–699.

    Article  PubMed  CAS  Google Scholar 

  34. Langille BL. Remodeling of developing and mature arteries: endothelium, smooth muscle and matrix. J Cardiovasc Pharmacol. 1993;21(suppl 1):S11–S17.

    Article  PubMed  Google Scholar 

  35. Glagov S. Intimai hyperplasia, vascular remodeling, and restenosis problem. Circulation. 1994;89:2888–2891.

    Article  PubMed  CAS  Google Scholar 

  36. Davies PF. Flow-mediated endothelial mechanotransduction. Physiol Rev. 1995;75:519–560.

    PubMed  CAS  Google Scholar 

  37. Birukov KG, Shirinsky VP, Stepanova OV, Tkatchuk VA, Hahn AWA, Resink T, Smimov VN. Stretch affects phenotype and proliferation of vascular smooth muscle cells. Mol Cell Biochem. 1995;144:131–139.

    Article  PubMed  CAS  Google Scholar 

  38. Wilson E, Mai Q, Sudhir K, Weiss RH, Ives HE. Mechanical strain induces growth of vascular smooth muscle cells via autocrine action of PDGF. J Cell Biol. 1993;123:741–747.

    Article  PubMed  CAS  Google Scholar 

  39. Yang Z, Noll G, Lüscher TF. Calcium antagonists differently inhibit proliferation of human coronary smooth muscle cells in response to pulsatile stretch and platelet-derived growth factor. Circulation. 1993;88:832–836.

    Article  PubMed  CAS  Google Scholar 

  40. Leung DYM, Glagov S, Mathews MB. Cyclic stretching stimulates synthesis of matrix components by arterial smooth muscle cells in vitro. Science. 1976;191:475–477.

    Article  PubMed  CAS  Google Scholar 

  41. Leung DYM, Glagov S, Mathews MB. A new in vitro system for studying cell response to mechanical stimulation. Exp Cell Res. 1977;109:285–298.

    Article  PubMed  CAS  Google Scholar 

  42. Grande JP, Glagov S, Bates SR, Horwitz AL. Effects of normolipemic and hyperlipemic serum on biosynthetic response to cyclic stretching of aortic smooth muscle cells. Arteriosclerosis. 1989;9:446–452.

    Article  PubMed  CAS  Google Scholar 

  43. Bardy N, Karillon GJ, Merval R, Samuel J-L, Tedgui A. Differential effects of pressure and flow on DNA and protein synthesis, and on fibronectin expression by arteries in a novel organ culture system. Circ Res. 1995;77:684–694.

    Article  PubMed  CAS  Google Scholar 

  44. Holycross BJ, Peach MJ, Owens GK. Angiotensin II stimulates increased protein synthesis, not increased DNA synthesis, in intact rat aortic segments, in vitro. J Vasc Res. 1993;30:80–86.

    Article  PubMed  CAS  Google Scholar 

  45. Wilson E, Sudhir K, Ives HE. Mechanical strain of rat vascular smooth muscle cells is sensed by specific extracellular matrix/integrin interactions. J Clin Invest. 1995;96:2364–2372.

    Article  PubMed  CAS  Google Scholar 

  46. Perrone CE, Fenwicksmith D, Vandenburgh HH. Collagen and stretch modulate autocrine secretion of insulin-like growth factor-1 and insulin-like growth factor binding proteins from differentiated skeletal muscle cells. J Biol Chem. 1995;270:2099–2106.

    Article  PubMed  CAS  Google Scholar 

  47. Komuro I, Yazaki Y. Intracellular signaling pathways in cardiac myocytes induced by mechanical stress. Trends Cardiovasc Med. 1994;4:117–121.

    Article  PubMed  CAS  Google Scholar 

  48. Sadoshima JI, Xu Y, Slayter HS, Izumo S. Autocrine release of angiotensin II mediates stretch-induced hypertrophy of cardiac myocytes in vitro. Cell. 1993;75:977–984.

    Article  PubMed  CAS  Google Scholar 

  49. Sadoshima JI, Izumo S. Mechanical stretch rapidly activates multiple signal transduction pathways in cardiac myocytes: potential involvement of an autocrine/paracrine mechanism. EMBO J. 1993;12:1681–1692.

    PubMed  CAS  Google Scholar 

  50. Schaller MD, Parsons JT. Focal adhesion kinase: an integrin-linked protein tyrosine kinase. Trends Cell Biol. 1993;3:258–262.

    Article  PubMed  CAS  Google Scholar 

  51. Juliano RL, Haskill S. Signal transduction from the extracellular matrix. J Cell Biol. 1993;120:577–585.

    Article  PubMed  CAS  Google Scholar 

  52. Wang N, Butler JP, Ingber DE. Mechanotransduction across the cell surface and through the cytoskeleton. Science. 1993;260:1124–1127.

    Article  PubMed  CAS  Google Scholar 

  53. Chen B-M, Grinnell AD. Integrins and modulation of transmitter release from motor nerve terminals by stretch. Science. 1995;269:1578–1580.

    Article  PubMed  CAS  Google Scholar 

  54. Weiser MCM, Majack RA, Tucker A, Orton EC. Static tension is associated with increased smooth muscle cell DNA synthesis in rat pulmonary arteries. Am J Physiol - Heart Circ Physiol. 1995;37:H1133–H1138.

    Google Scholar 

  55. Bialecki RA, Kulik TJ, Colucci WS. Stretching increases calcium influx and efflux in cultured pulmonary arterial smooth muscle cells. Am J Physiol. 1992;263:L602–L606.

    PubMed  CAS  Google Scholar 

  56. Davis MI, Donovitz JA, Hood JD. Stretch-activated single-channel and whole cell currents in vascular smooth muscle cells. Am J Physiol. 1992;262:C1083–C1088.

    PubMed  CAS  Google Scholar 

  57. Barany K, Rokolya A, Barany M. Stitch activates myosin light chain kinase in arterial smooth muscle. Biochem Biophys Res Commun. 1990;183:164–171.

    Article  Google Scholar 

  58. Guharay F, Sachs F. Stretch activated single ion-channel currents in tissue-cultured embryonic chick skeletal muscle. JPhysiol Land. 1984;352:685–701.

    CAS  Google Scholar 

  59. Yang X, Sachs F. Blocks of stretch-activated ion channels in Xenopus oocytes by gadolinium and calcium ions. Science. 1989;243:1068–1071.

    Article  PubMed  CAS  Google Scholar 

  60. Kulik TJ, Bialecki RA, Colucci WS, Rothman A, Glennon ET, Underwood RH. Stretch increases inositol trisphosphate and inositol tetrakisphosphate in cultured pulmonary vascular smooth muscle cells. Biochem Biophys Res Commun. 1991;180:982–987.

    Article  PubMed  CAS  Google Scholar 

  61. Watson MH, Venance SL, Pang SC, Mak AS. Smooth muscle cell proliferation: expression and kinases activities of p34cdc2 and mitogen-activated protein kinases homologues. Circ Res. 1993;73:109–117.

    Article  PubMed  CAS  Google Scholar 

  62. Adam LP, Franklin MT, Raff GJ, Hathaway DR. Activation of mitogen-activated protein kinase in porcine carotid arteries. Circ Res. 1995;76:183–190.

    Article  PubMed  CAS  Google Scholar 

  63. Xu QB, Liu YS, Gorospe M, Udelsman R, Holbrook NJ. Acute hypertension activates mitogenactivated protein kinases arterial wall. J Clin Invest. 1996;97:508–514.

    Article  PubMed  CAS  Google Scholar 

  64. Owens GK, Schwartz SM. Vascular smooth muscle cell hypertrophy and hyperploidy in the Goldblatt hypertensive rat. Circ Res. 1983;53:491–501.

    Article  PubMed  CAS  Google Scholar 

  65. Takasaki I, Chobanian AV, Sarzani R, Brecher P. Effect of hypertension on fibronectin expression in the rat aorta. Journal of Biological Chemistry. 1990;265:21935–21939.

    PubMed  CAS  Google Scholar 

  66. Owens GK. Influence of blood pressure on development of aortic medial smooth muscle hypertrophy in spontaneously hypertensive rats. Hypertension. 1987;9:178–187.

    Article  PubMed  CAS  Google Scholar 

  67. Kim S, Ohta K, Hamaguchi A, Omura T, Tominaga K, Yukimura T, Miura K, Tanaka M, Iwao H. AT1 receptor-mediated stimulation by angiotensin II of rat aortic fibronectin gene expression in vivo. Br J Pharmacol. 1994;113:662–663.

    Article  PubMed  CAS  Google Scholar 

  68. limeno H, Crawford DC, Hosoi M, Chobanian AV, Brecher P. Angiotensin II alters aortic fibronectin independently of hypertension. Hypertension. 1994;23:823–826.

    Article  PubMed  CAS  Google Scholar 

  69. Crawford DC, Chobanian AV, Brecher P. Angidotensin II induces fibronectin expression associated with cardiac fibrosis in the rat. Circ Res. 1994;74:727–739.

    Article  PubMed  CAS  Google Scholar 

  70. Geisterfer AAT, Peach MJ, Owens GK. Angiotensin II induces hypertrophy, not hyperplasia, of cultured aortic smooth muscle cells. Circ Res. 1988;62:749–756.

    Article  PubMed  CAS  Google Scholar 

  71. Berk BC, Vekshtein V, Gordon HM, Tsuda T. Angiotensin II-stimulated protein synthesis in cultured vascular smooth muscle cells. Hypertension. 1989;13:305–314.

    Article  PubMed  CAS  Google Scholar 

  72. Owens GK. Control of hypertrophic versus hyperplastic growth of vascular smooth muscle cells. Am J Physiol. 1989;257:H1755–H1765.

    PubMed  CAS  Google Scholar 

  73. Sudhir K, Wilson E, Chatterjee K, Ives HE. Mechanical strain and collagen potentiate mitogenic activity of angiotensin-II in rat vascular smooth muscle cells. J Clin Invest. 1993;92:3003–3007.

    Article  PubMed  CAS  Google Scholar 

  74. Bardy N, Menial R, Benessiano J, Samuel J-L, Tedgui A. Pressure and angiotensin II synergistically induce aortic fibronectin expression in organ culture model of rabbit aorta. Evidence for a pressure-induced tissue renin-angiotensin system. Circ Res. 1996;79:70–78.

    Article  PubMed  CAS  Google Scholar 

  75. Noda M, Katoh T, Takuwa N, Kumada M, Kurokawa K, Takuwa Y. Synergistic stimulation of parathyroid hormone-related peptide gene expression by mechanical stretch and angiotensin II in rat aortic smooth muscle cells. J Biol Chem. 1994;269:17911–17917.

    PubMed  CAS  Google Scholar 

  76. Miyata S, Haneda T, Nakamura Y, Fukuzawa J, Okamoto K, Takeda H, Osaki J, Sakai H, Kikuchi K. The role of cardiac renin-angiotensin system in stretch-induced hypertrophy of cultured neonatal rat heart cells. Circulation. 1993;88(Part 2):I-614 (Abstract).

    Google Scholar 

  77. Kojima M, Shiojima I, Yamazaki T, Komuro I, Yunzeng Z, Ying W, Mizuno T, Ueki K, Tobe K, Kadowaki T, et al. Angiotensin Il receptor antagonist TCV-116 induces regression of hypertensive left ventricular hypertrophy in vivo and inhibits the intracellular signaling pathway of stretch-mediated cardiomyocyte hypertrophy in vitro. Circulation. 1994;89:2204–2211.

    Article  PubMed  CAS  Google Scholar 

  78. Hishikawa K, Nakaki T, Marumo T, Hayashi M, Suzuki H, Kato R, Saruta T. Pressure promotes DNA synthesis in rat cultured vascular smooth muscle cells. JClin Invest. 1994;93:1975–1980.

    Article  CAS  Google Scholar 

  79. Cheng GC, Libby P, Grodzinsky Al, Lee RT. Induction of DNA synthesis by a single transient mechanical stimulus of human vascular smooth muscle cells: role of fibroblast growth factor-2. Circulation. 1996;93:99–105.

    Article  PubMed  CAS  Google Scholar 

  80. Mallat Z, Delcayre C, Tedgui A. Effects of stretch and pressure-induced crush of the arterial wall on the induction of immediate early protooncogenes. JAm Coll Cardiol. 1995;25:291A (abstract).

    Google Scholar 

  81. Abate C, Luk D, Gentz R, Rauscher FJ, Currant T. Expression and purification of the leucine zipper and DNA-binding domains of Fos and Jun: both Fos and Jun contact DNA directly. Proc Natl Acad Sci. 1990;87:1032–1036.

    Article  PubMed  CAS  Google Scholar 

  82. Schuermann M, Neuberg M, Hunter JB, Jenuwein T, Ryseck RP, Bravo R, Müller R. The leucine repeat motif in Fos protein mediates complex formation with Jun/AP-1 and is required for transformation. Cell. 1989;56:507–516.

    Article  PubMed  CAS  Google Scholar 

  83. Indolfi C, Esposito G, Dilorenzo E, Rapacciuolo A, Feliciello A, Porcellini A, Avvedimento VE, Condorelli M, Chiariello M. Smooth muscle cell proliferation is proportional to the degree of balloon injury in a rat model of angioplasty. Circulation. 1995;92:1230–1235.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tedgui, A., Levy, B. (1997). Effect of Tensile Stress in Vascular Remodeling. In: Lafont, A., Topol, E.J. (eds) Arterial Remodeling: A Critical Factor in Restenosis. Developments in Cardiovascular Medicine, vol 198. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6079-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6079-1_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7785-6

  • Online ISBN: 978-1-4615-6079-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics