Skip to main content

Endothelial Dysfunction after Angioplasty: A Pathway for Remodelling?

  • Chapter
Arterial Remodeling: A Critical Factor in Restenosis

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 198))

  • 63 Accesses

Abstract

The endothelium can elicit relaxations when stimulated by neurotransmitters, hormones, substances derived from platelets and the coagulation system (Fig. 1) (1, 2). Furthermore, shear forces exerted by the circulating blood induce endothelium-dependent vasodilation, an important adaptive response of the vasculature during exercise. The mediator of these responses is a diffusible substance with a half-life of a few seconds, the so-called endothelium-derived relaxing factor (EDRF) (2) which has recently been identified as the free radical nitric oxide (NO) (3). Nitric oxide is formed from L-arginine by oxidation of its guanidine-nitrogen terminal (3). The intracellular mechanism by which nitric oxide causes relaxation in vascular smooth muscle cells involves formation of cyclic 3’5’-guanosine monophosphate via the enzyme soluble guanylyl cyclase (Fig. 1) (10).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lüscher, T. F., Vanhoutte, P. M.: The Endothelium: Modulator of Cardiovascular Function. Boca Ranton, CRC Press, 1990.

    Google Scholar 

  2. Furchgott, R. F., Zawadzki, J. V.: The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 299: 373, 1980.

    Google Scholar 

  3. Palmer, R. M., Ashton, D. S., Moncada, S.: Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature 333: 664, 1988.

    PubMed  CAS  Google Scholar 

  4. Bredt, D. S., Hwang, P. M., Snyder, S. H.: Localization of nitric oxide synthase indicating a neural role for nitric oxide. Nature 347: 768, 1990.

    PubMed  CAS  Google Scholar 

  5. Valiance, P., Leone, A., Calver, A., et al.: Accumulation of an endogenous inhibitor of nitric oxide synthesis in chronic renal failure. Lancet 339: 572, 1992.

    Google Scholar 

  6. Wright, C. E., Rees, D. D., Moncada, S.: Protective and pathological roles of nitric oxide in endotoxin shock. Cardiovasc Res 26: 48, 1992.

    PubMed  CAS  Google Scholar 

  7. Rees, D. D., Palmer, R. M., Schulz, R., et al.: Characterization of three inhibitors of endothelial nitric oxide synthase in vitro and in vivo. Br J Pharmacol 101: 746, 1990.

    PubMed  CAS  Google Scholar 

  8. Yang, Z. H., von Segesser, L., Bauer, E., et al.: Different activation of the endothelial L-arginine and cyclooxygenase pathway in the human internal mammary artery and saphenous vein. Circ Res 68: 52, 1991.

    PubMed  CAS  Google Scholar 

  9. Rees, D. D., Palmer, R. M. J., Moncada, S.: Role of endothelium-derived nitric oxide in the regulation of blood pressure. Proc Natl Acad Sci 86: 3375, 1989.

    PubMed  CAS  Google Scholar 

  10. Rapoport, R. M., Draznin, M. B., Murad, F.: Endothelium-dependent relaxation in rat aorta may be mediated through cyclic GMP-dependent protein phosphorylation. Nature 306: 174, 1983.

    PubMed  CAS  Google Scholar 

  11. Huang P.L., Huang Z., Mashimo, H., Block, K.D., Moskowitz, M.A., Bevan, J.A., Fishman, M.C. Hypertension in mice lacking the gene for endothelial nitric oxide synthase. Nature, 377: 239, 1995.

    PubMed  CAS  Google Scholar 

  12. Jia, L., Bonaventura, C., Bonaventura, J., Stamler, J.S. S-nitrosohaemoglobin: a dynamic activity of blood involved in vascular control. Nature 380: 221–226, 1996.

    PubMed  CAS  Google Scholar 

  13. Cohen, R. A., Shepherd, J. T., Vanhoutte, P. M.: Inhibitory role of the endothelium in the response of isolated coronary arteries to platelets. Science 221: 273, 1983.

    PubMed  CAS  Google Scholar 

  14. Yang, Z., Stulz, P., Von, S. L., et al.: Different interactions of platelets with arterial and venous coronary bypass vessels. Lancet 337: 939, 1991.

    PubMed  CAS  Google Scholar 

  15. Lüscher, T. F., Diederich, D., Siebenmann, R., et al.: Difference between endothelium-dependent relaxation in arterial and in venous coronary bypass grafts. N Engl J Med 319: 462, 1988.

    PubMed  Google Scholar 

  16. Moncada, S., Vane, V. R.: Pharmacology and endogenous roles of prostaglandin endoperoxides, thromboxane A2 and prostacyclin. Pharmacol Rev 30: 293, 1979.

    Google Scholar 

  17. Radomski, M. W., Palmer, R. M., Moncada, S.: Comparative pharmacology of endothelium-derived relaxing factor, nitric oxide and prostacyclin in platelets. Br J Pharmacol 92: 181, 1987.

    PubMed  CAS  Google Scholar 

  18. Richard, V., Tanner, F. C., Tschudi, M., et al.: Different activation of L-arginine pathway by bradykinin, serotonin, and clonidine in coronary arteries. Am J Physiol 259: H1433, 1990.

    PubMed  CAS  Google Scholar 

  19. Tschudi, M., Richard, V., Bühler, F. R., et al.: Importance of endothelium-derived nitric oxide in porcine coronary resistance arteries. Am J Physiol 260: HI3, 1991.

    Google Scholar 

  20. Vanhoutte, P. M.: Vascular physiology: the end of the quest? [news]. Nature 327: 459, 1987.

    PubMed  CAS  Google Scholar 

  21. De Mey, J. G., Vanhoutte, P. M.: Heterogeneous behavior of the canine arterial and venous wall. Importance of the endothelium. Circ Res 51: 439, 1982.

    PubMed  Google Scholar 

  22. Yanagisawa, M., Kurihara, H., Kimura, S., et al.: A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 332: 411, 1988.

    PubMed  CAS  Google Scholar 

  23. Ohnaka, K., Takayanagi, R., Nishikawa, M., et al.: Purification and characterization of a phosphoramidon-sensitive endothelin-converting enzyme in porcine aortic endothelium.. J Biol Chem 268: 26759, 1993.

    PubMed  CAS  Google Scholar 

  24. Xu, D., Emoto, N., Giaid, A., et al.: ECE-1: a membrane-bound metalloprotease that catalyzes the proteolytic activation of big endothelin-1. Cell 78: 473, 1994.

    PubMed  CAS  Google Scholar 

  25. Boulanger, C., Lüscher, T. F.: Release of endothelin from the porcine aorta. Inhibition of endothelium-derived nitric oxide. J Clin Invest 85: 587, 1990.

    PubMed  CAS  Google Scholar 

  26. Kiowski, W., Lüscher, T. F., Linder, L., et al.: Endothelin-l-induced vasoconstriction in humans. Reversal by calcium channel blockade but not by nitrovasodilators or endothelium-derived relaxing factor. Circulation 83: 469, 1991.

    PubMed  CAS  Google Scholar 

  27. Wagner, O. F., Christ, G., Wojta, J., et al.: Polar secretion of endothelin-1 by cultured endothelial cells. J Biol Chem 267: 16066, 1992.

    PubMed  CAS  Google Scholar 

  28. Yokokawa, K., Kohno, M., Yasunari, K., et al.: Endothelin-3 regulates endothelin-1 production in cultured human endothelial cells. Hypertension 18: 304, 1991.

    PubMed  CAS  Google Scholar 

  29. Stewart, D. J., Langleben, D., Cernacek, P., et al.: Endothelin release is inhibited by coculture of endothelial cells with cells of vascular media. Am J Physiol 259: H1928, 1990.

    PubMed  CAS  Google Scholar 

  30. Arai, H., Hori, S., Aramon, I., et al.: Cloning and expression of a cDNA encoding an endothelin receptor. Nature 348: 730, 1990.

    PubMed  CAS  Google Scholar 

  31. Sakurai, T., Yanagisawa, M., Takuwa, Y., et al.: Cloning of a cDNA encoding a non-isopeptideselective subtype of the endothelin receptor. Nature 348: 732, 1990.

    PubMed  CAS  Google Scholar 

  32. Lüscher, T. F.: Do we need endothelin antagonists? Cardiovasc Res 27: 2089, 1993.

    PubMed  Google Scholar 

  33. Seo, B., Oemar, B. S., Siebenmann, R., et al.: Both ETA and ETB receptors mediate contraction to endothelin-1 in human blood vessels. Circulation 89: 1203, 1994.

    PubMed  CAS  Google Scholar 

  34. Wenzel, R. R., Noll, G., Lüscher, T. F.: Endothelin receptor antagonists inhibit endothelin in human skin microcirculation. Hypertension 23: 581, 1994.

    PubMed  CAS  Google Scholar 

  35. Haynes, W. G., Webb, D. J.: Contribution of endogenous generation of endothelin-1 to basal vascular tone. Lancet 344: 852, 1994.

    PubMed  CAS  Google Scholar 

  36. Ng, K. K., Vane, J. R.: Conversion of angiotensin Ito angiotensin II. Nature 216: 762, 1967.

    PubMed  CAS  Google Scholar 

  37. Wiemer, G., Scholkens, B. A., Becker, R. H., et al.: Ramiprilat enhances endothelial autacoid formation by inhibiting breakdown of endothelium-derived bradykinin. Hypertension 18: 558, 1991.

    PubMed  CAS  Google Scholar 

  38. Baumgartner, H. R., Studer, A.: Gezielte Ueberdehnung der Aorta abdominalis am normo-und hypercholesterinaemischen Kaninchen. Pathol Microbiol (Basel) 26: 129, 1963.

    CAS  Google Scholar 

  39. Radomski, M. W., Palmer, R. M., Moncada, S.: The anti-aggregating properties of vascular endothelium: interactions between prostacyclin and nitric oxide. Br J Pharmacol 92: 639, 1987.

    PubMed  CAS  Google Scholar 

  40. Ross, R.: The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 362: 801, 1993.

    PubMed  CAS  Google Scholar 

  41. Garg, U. C., Hassid, A.: Nitric oxide-generating vasodilators and 8-bromo-cyclic guanosine monophosphate inhibit mitogenesis and proliferation of cultured rat vascular smooth muscle cells. J Clin Invest 83: 1774, 1989.

    PubMed  CAS  Google Scholar 

  42. Battegay, E. J., Raines, E. W., Seifert, R. A., et al.: TGF-beta induces bimodal proliferation of connective tissue cells via complex control of an autocrine PDGF loop. Cell 63: 515, 1990.

    PubMed  CAS  Google Scholar 

  43. Castellot, J. J., Jr., Beeler, D. L., Rosenberg, R. D., et al.: Structural determinants of the capacity of heparin to inhibit the proliferation of vascular smooth muscle cells. J Cell Physiol 120: 315, 1984.

    PubMed  CAS  Google Scholar 

  44. Hassid, A., Arabshahi, H., Bourcier, T., Dhausi, G.S., Matthews, C. Nitric oxide selectively amplifies FGF-2-induced mitogenesis in primary aortic smooth muscle cells. Am. J. Physiol. 267: H1040, 1994.

    PubMed  CAS  Google Scholar 

  45. Hannan, R. L., Kourembanas, S., Flanders, K. C., et al.: Endothelial cells synthesize basic fibroblast growth factor and transforming growth factor beta. Growth Factors 1: 7, 1988.

    PubMed  CAS  Google Scholar 

  46. DiCorleto, P. E., Hassid, A.: Growth factor production by endothelial cells. In U. Ryan (eds.): Endothelial Cells. Boca Raton, CRC Press, 1990, 51.

    Google Scholar 

  47. Yang, Z., Noll, G., Luscher, T. F.: Calcium antagonists differently inhibit proliferation of human coronary smooth muscle cells in response to pulsatile stretch and platelet-derived growth factor. Circulation 88: 832, 1993.

    PubMed  CAS  Google Scholar 

  48. Hansson, G.K., Geng, Y., Holm, J., Hardhammer, P., Wennmalm, A., Jennische, E. Arterial smooth muscle cells express nitric oxide synthqse in response to arterial injury. J. Exp, Med. 180: 733, 1994.

    CAS  Google Scholar 

  49. Rimarachin, J.A., Jacobson, J.A., Scabo, P., Maclouf, J., Creminon, C., Weksler, B.B. Regulation of cyclooxygenase- 2 expression in aortic smooth muele cells. Arterio. Thromb. 14: 1021; 1994.

    CAS  Google Scholar 

  50. Mattsson, E., Brunkwall, J., Falt, K., Bergqvist, D. Vessel repair after balloon angioplasty: morphological appearance and prostacyclin synthesis. Eur. J. Vase. Surg. 6: 585; 1992.

    CAS  Google Scholar 

  51. Joly, G.A., Schini, V.B., Vanhoutte, P.M. Balloon injury and interleukin-lb induce nitric oxide synthase activity in rat carotid arteries. Cire Res 71: 331, 1994.

    Google Scholar 

  52. Major, T.C., Overhiser, R.W., Panek, R.L. Evidence for NO involvment in regulating vascular reactivity in; balloon-injured rat carotid artery. Am. J. Physiol 269: H988, 1995.

    PubMed  CAS  Google Scholar 

  53. Fukuo K, Hata S, Suhara T, Nakahashi T, Shinto Y, Tsujimoto Y, Morimoto S, Ogihara T. Nitric oxide induces upregulation of Fas and apoptosis in vascular smooth muscle. Hypertension, 27: 823, 1996.

    PubMed  CAS  Google Scholar 

  54. Sarkar, R., Meinberg, E.G., Stanley, J.C., Gordon, D., Webb, C.R. Nitric oxide reversibly inhibits the migration of cultured vascular smooth muscle cells. Cire Res. 78: 225, 1996.

    CAS  Google Scholar 

  55. Scott-Burden, T., Schini, V.B., Elizondo, E, Junquero, D.C., Vanhoutte, P.M. Platelet-derived growth factor suppresses and fibroblast growth factor enhances cytokine-induced production of nitric oxide by cultured smooth muscle cells: effect on proliferation. Cire Res, 71: 1088; 1992.

    CAS  Google Scholar 

  56. Tahara A, Kohno M., Yanagi, S., Itagane, H., Toda, I, Akioka, K., Teragaki, M., Yasuda, M., Takeuchi, K., Takeda, T. Circulating immunoreactive endothelin in patients undergoing percutaneous transluminal coronary angioplasty. Metabolism, 40: 1235, 1992.

    Google Scholar 

  57. Wang, X., Douglas, S.A., Louden, C., Vickery-Clark, L.M., Feurstein, G.Z., Ohlstein, E.H. Expression of endothelin-1, endothelin-3, endothelin-converting enzyme-1 and endothelin-A and endothelin-B receptor mRNA after angioplasty-induced neointimal formation in the rat. Circ. Res. 78; 322; 1996.

    PubMed  CAS  Google Scholar 

  58. Hahn, A.W, Resink, T.J., Scott-Burden, T., Powell, J., Dohi, Y., Buhler, F.R. Stimulation of endothelin mRNA and secretion in rat vascular smooth muscle cells; a novel autocrine function. Cell Regul 1; 649; 1990.

    PubMed  CAS  Google Scholar 

  59. Azuma, H., Hamasaki, H., Niimi, Y, Terada, T., Matsubara, O. Role of endothelin-1 in neointima formation after endothelial removal in rabbit carotid arteries. Am. J. Physiol. 267: H2259; 1994.

    PubMed  CAS  Google Scholar 

  60. Douglas, S.A., Louden, C., Vickery-Clark, L.M., Storer, B., Hart, T, Feurstein, G.Z., Elliott, J.D., Ohlstein, E.H. A role for endogenous endothelin-1 in neointimal formation after rat carotid angioplasty; protective effects of the novel nonpeptide endothelin receptor antagonist SB 209670. Circ Res, 75: 190–197; 1994.

    PubMed  CAS  Google Scholar 

  61. Janiak, P., Pillion, A., Prost, J-F, Vilaine, J-P. Role of angiotensin subtype 2 receptor in neointima formation after vascular injury. Hypertension, 20: 737–745; 1992.

    PubMed  CAS  Google Scholar 

  62. Dzau, V.J., Gibbons, G.H., Pratt, R.E. Molecular mechanisms of vascular renin-angiotensin system in myointimal hyperplasia. Hypertension, 18: II-100-II-105; 1991

    Google Scholar 

  63. Caldwell, P.R.B., Seegal, B.C., Hsu, K.C., Das, M., Soffer, R.L. Angiotensin converting enzyme: vascular endothelial localization. Science. 191: 1050–1051, 1976

    PubMed  CAS  Google Scholar 

  64. Johnson, A.R., Erdos, E.G. Metabolism of vasoactive peptides by human endothelial cells in culture: angiotensin I converting enzyme (kininase II) and angiotensinase. J. Clin. Invest. 59; 684695, 1977

    Google Scholar 

  65. Fishman, J.A., Ryan, G.B., Kamosky, M.J. Endothelial regeneration in the rat carotid artery and the significance of endothelial denudation in the pathogenesis of myointimal thickening. Lab. Invest. 32: 339–351; 1975.

    PubMed  CAS  Google Scholar 

  66. Lindner, V., Reidy, M.A., Fingerle, J., Regrowth of arterial endothelium. Denudation with minimal trauma leads to complete endothelial cell regrowth. Lab Invest. 61: 556–563; 1989.

    PubMed  CAS  Google Scholar 

  67. Vassanelli C, Menegatti G, Zanolla L, Molinari J, Zanotto G, Zardini P. Coronary vasoconstriction in response to acetylcholine after balloon angioplàsty; possible role of endothelial dysfunction. Coron. Art. Dis.: 5: 979–986, 1994.

    CAS  Google Scholar 

  68. Faxon, D.P., Sanborn, T.A., Haudenschild, C., Gottsman, S.B., McGovern, W.A., Ryan, T.J. Effect of antiplatelet therapy on restenosis after experimental angioplasty. Am. J. Cardiology 53: 72C–76C, 1984

    CAS  Google Scholar 

  69. Minick, C.R., Stemerman, M.B., Insull, W. Jr. Effect of regenerated endothelium on lipid accumulation in the arterial wall. Proc. Natl. Acad. Sci. USA 74: 1724–1728, 1977

    PubMed  CAS  Google Scholar 

  70. Daley, S.J., Gotlieb, A.I. Fibroblast growth factor receptor-1 expression is associated with neointimal formation in vitro. Am. J. Pathol, 148: 1193–1202; 1996

    PubMed  CAS  Google Scholar 

  71. Haudenschild, C., Schwartz, S.M. Endothelial regeneration II: restitution of endothelial integrity. Lab. Invest. 41: 407–410; 1979.1979

    Google Scholar 

  72. Thompson, M.M., Budd, J.S., Eady, S.L., Underwood, M.J., James, R.F., Bell, P.R. The effect of transluminal endothelial seeding on myointimal hyperplasia following angioplasty. Eur. J. Vase. Surg. 8; 423–434; 1994

    CAS  Google Scholar 

  73. Asahara, T., Bauters, C., Pastore, C., Kearney, M., Rossow, S., Bunting, S., Ferrara, N., Symes, J.F., Isner, J.M. Local delivery of vascular endothelial growth factor accelerates reendothelialization and attenuates intimal hyperplasia in balloon-injured carotid artery. Circulation 99: 2793–2801, 1995., 1995

    Google Scholar 

  74. Meurice, T., Bauters, C., Auffray, J-L, Vallet, B, Hamon, M., Valero, F., Van Belle, E, Lablanche, J-M, Bertrand, M.E. Basic fibroblast growth factor restores endothelium-dependent responses after balloon injury of rabbit arteries. Circulation, 93: 18–22; 1996.

    PubMed  CAS  Google Scholar 

  75. Lindner, V., Majack, R.A., Reidy, M.A. Basic fibroblast growth factor stimulates endothelial regrowth and proliferation in denuded arteries. J. Clin. Invest, 85: 2004–2008; 1990.

    PubMed  CAS  Google Scholar 

  76. Bjomsson, T.D., Dryjski, M., Tluczek, J., Mennie, R., Ronan, J., Mellin, T.N., Thomas, K.A. Acidic fibroblast growth factor promotes vascular repair. Proc Natl. Acad. Sci. USA, 88: 8651–8655; 1992.

    Google Scholar 

  77. Kostyk, S.K., Kourembanas, S., Wheeler, E.L., Medeiros, D., McQuillan, L.P., d’Amore, P.A., Braunhut, S.J. Basic fibroblast growth factor increases nitric oxide synthase production in bovine endothelial cells, Am. J. Physiol 269: H1583–H1589, 1995.

    PubMed  CAS  Google Scholar 

  78. Sato, Y., Rifkin, DB. Inhibition of endothelial cell movement by pericytes and smooth muscle cells: activation of a latent transforming growth factor bl-like molecule by plasmin during co-culture. J. Cell. Biol. 109: 309; 1989.

    PubMed  CAS  Google Scholar 

  79. Amal, J-F, Yamin, J., Dockery, S., Harrison, D.G., Regulation of endothelial nitric oxide synthase mRNA, protein and activity during cell growth. Am. J. Physiol., 267; C1381; 1994.

    Google Scholar 

  80. Scott-Burden, T., Vanhoutte, P.M. The endothelium as a regulator of vascular smooth muscle proliferation. Circulation 87: V-51, 1993.

    Google Scholar 

  81. Lee, J.S., Adrie, C., Jacob, H.J., Roberts, J.D., Jr, Zapol, W.M., Bloch, K.D. Chronic inhalation of nitric oxide inhibits neointimal formation after balloon-induced arterial injury; Circ. Res.; 78: 337; 1996.

    PubMed  CAS  Google Scholar 

  82. Guo, J-P, Panday, M.M., Consigny, P.M., Lefer, A.M. Mechanisms of vascular preservation by a novel NO donor following rat carotid artery intimal injury. Am. J. Physiol. 269: H1122, 1995.

    PubMed  CAS  Google Scholar 

  83. von der Leyen, H.E., Gibbons, G.H., Morishita, R., Lewis, N.P., Zhang, L., Nakajima, M., Kaneda, Y., Cooke, J.P., Dzau, V.J. Gene therapy inhibiting neointimal vascular lesion: in vivo transfer of endothelial cell nitric oxide synthase gene. Proc. Natl. Acad. Sci., 92: 1137; 1995.

    PubMed  Google Scholar 

  84. Tarry WC, Makhoul RG. L-arginine improves endothelium-dependent vasorelaxation and reduces intimal hyperplasia after balloon angioplasty. Arterioscl Thromb: 14: 938–943, 1994.

    PubMed  CAS  Google Scholar 

  85. Hamon M, Vallet B, Bauters C, Wemet N, McFadden EP, Lablanche JM, Dupuis B, Bertrand ME. Long-term oral administration of L-arginine reduces intimai thickening and enhances neoendothelium-dependent acetylcholine-induced relaxation after arterial injury. Circulation, 90: 1357, 1994.

    PubMed  CAS  Google Scholar 

  86. Heinzel, B., John, M., Klatt, P., Bohme, E., Mayer, B. Ca2+ calmodulin dependent formation of hydrogen peroxide by brain nitric oxide synthase. J. Biol. Chem, 281: 627, 1992.

    CAS  Google Scholar 

  87. Powell, J.S., Clozel, J-P, Muller R.K.M., Kuhn, H., Hefti, F., Hosang, M., Baumgartner, H.R. Inhibitors of angiotensin converting enzyme prevent myointimal proliferation after vascular injury. Science, 245: 186, 1989.

    PubMed  CAS  Google Scholar 

  88. Meredith JE, Fazeli B, Schwartz MA. The extracellular matrix as a survival factor. Mol Biol Cell, 4: 953, 1993.

    PubMed  CAS  Google Scholar 

  89. Re F, Zanetti A, Sironi N, Polentarutti, Lanfrancone L, Dejana E, Colotta F. Inhibition of anchorage-dependent cell spreading triggers apoptosis in cultured human endothelial cells. J Cell Biol 127: 537, 1994.

    PubMed  CAS  Google Scholar 

  90. Bauters, C., Marotte, F., Hamon, M., Oliviero, P., Farhadian, F., Robert, V., Samuel, J-L, Rappaport, L., Accumulation of fetal fibronectin mRNAs after balloon denudation of rabbit arteries. Circulation, 92: 904; 1995.

    PubMed  CAS  Google Scholar 

  91. Boyd, C.D., Kniep, A.C., Pierce, R.A., Deak, S.B., Karboski, C., Miller, D.C., Parker, M.I., Mackenzie, J.W., Rosenbloom, J., Scott, G.E. Increased elastin mRNAs levels associated with surgical induced intimal injury. Connect. Tis. Res., 18: 65; 1988.

    CAS  Google Scholar 

  92. Madri, J.A., Reidy, M., Kocher, O., Bell, L. Endothelial cell behaviour following denudation injury is modulated by TGFb and fibronectin. Lab. Invest. 60: 755; 1989.

    PubMed  CAS  Google Scholar 

  93. Morita, T., Kourembanas S. Endothelial cell expression of vasconstrictors and growth factors is regulated by smooth muscle cell-derived carbon monoxyde. J. Clin. Invest., 96: 2676, 1995

    PubMed  CAS  Google Scholar 

  94. Jiang, B., Morimoto, S., Fukuo, K., Hirotani, A., Tamatani, M., Nakahashi, T., Nishibe, A., Niinobu, T., Hata, S., Chen, S., Ogihara, T. Parathyroid hormone-related protein inhibits endothelin-1 production. Hypertension, 27: 360; 1996.

    PubMed  CAS  Google Scholar 

  95. Shimokawa, H., Aarhus, L. L., Vanhoutte, P. M.: Porcine coronary arteries with regenerated endothelium have a reduced endothelium-dependent responsiveness to aggregating platelets and serotonin. Circ Res 61: 256, 1987.

    PubMed  CAS  Google Scholar 

  96. Shimokawa, H., Flavahan, N. A., Vanhoutte, P. M.: Natural course of the impairment of endothelium-dependent relaxations after balloon endothelium removal in porcine coronary arteries. Possible dysfunction of a pertussis toxin-sensitive G protein. Circ Res 65: 740, 1989.

    PubMed  CAS  Google Scholar 

  97. Flavahan, N.A., Shimokawa, H., Vanhoutte, P.M. Pertussis toxin inhibits endothelium-dependent relaxations to certain agonists in porcine coronary arteries. J. Physiol.408: 549; 1989.

    PubMed  CAS  Google Scholar 

  98. Freeman, J.E., Kuo, W.Y., Milligan, G., Lowenstein, C.J., Levine, M.A., Flavahan, N.A. Analysis of pertussis toxin-sensitive receptor: G-protein interactions in native procine endothelial cells. Endothelium, 3: 321; 1995.

    CAS  Google Scholar 

  99. Day, N.S., Ge, T., Codina, J., Bimbaumer, L., Vanhoutte, P.M., Boulanger, C.M. Gi proteins and the response to 5-hydroxytryptamine in porcine cultured endothelial cells with impaired release of EDRF. British J. Pharmacol. 115; 822, 1995.

    CAS  Google Scholar 

  100. Berthiaume, F., Frangos, J.A. Flow-induced prostacyclin production is mediated by a pertussis toxin-sensitive G-protein. FEBS Letters, 308: 277; 1992.

    PubMed  CAS  Google Scholar 

  101. Shimokawa, H., Vanhoutte, P. M.: Impaired endothelium-dependent relaxation to aggregating platelets and related vasoactive substances in porcine coronary arteries in hypercholesterolemia and atherosclerosis. Circ Res 64: 900, 1989.

    PubMed  CAS  Google Scholar 

  102. Shibano, T., Codina, J., Bimbaumer, L., Vanhoutte P.M. Pertussis toxin sensitive G-proteins in regenerated endothelial cells after balloon denudation of porcine coronary artery. Am. J. Physiol., 267: H979–H981; 1994.

    PubMed  CAS  Google Scholar 

  103. Flavahan, N.A. Lysophosphatidylcholine modifies G-proteins-dependent signilling in procine endothelial cells. Am. J. Physiol., 264: H722, 1993.

    PubMed  CAS  Google Scholar 

  104. Liao, J.K., Shin, W.S., Lee, W.Y., Clark, S.L. Oxideized low-density lipoproteins decrease the expression of endothelial nitric oxide synthase. J. Biol. Chem. 270: 319; 1995.

    PubMed  CAS  Google Scholar 

  105. Liao, J.K., Clark, S.L., Regulation of G-proteins a2i subunit expression by oxidized low-density lipoprotein. J. Clin. Invest. 95: 1457; 1995.

    PubMed  CAS  Google Scholar 

  106. Harrison, D. G., Freiman, P. C., Armstrong, M. L., et al.: Alterations of vascular reactivity in atherosclerosis. Circ Res 61: 1174, 1987.

    Google Scholar 

  107. Tanner, F. C., Noll, G., Boulanger, C. M., et al.: Oxidized low density lipoproteins inhibit relaxations of porcine coronary arteries. Role of scavenger receptor and endothelium-derived nitric oxide. Circulation 83: 2012, 1991.

    PubMed  CAS  Google Scholar 

  108. Minor, R., Jr., Myers, P. R., Guerra, R., Jr., et al.: Diet-induced atherosclerosis increases the release of nitrogen oxides from rabbit aorta. J Clin Invest 86: 2109, 1990.

    PubMed  CAS  Google Scholar 

  109. Cooke, J. P., Singer, A. H., Tsao, P., et al.: Antiatherogenic effects of L-arginine in the hypercholesterolemic rabbit. J Clin Invest 90: 1168, 1992.

    PubMed  CAS  Google Scholar 

  110. Drexler, H., Zeiher, A. M., Meinzer, K., et al.: Correction of endothelial dysfunction in coronary microcirculation of hypercholesterolaemic patients by L-arginine. Lancet 338: 1546, 1991.

    PubMed  CAS  Google Scholar 

  111. Lerman, A., Edwards, B. S., Hallett, J. W., et al.: Circulating and tissue endothelin immunoreactivity in advanced atherosclerosis. New Engl J Med 325: 997, 1991.

    PubMed  CAS  Google Scholar 

  112. Winkles, J. A., Alberts, G. F., Brogi, E., et al.: Endothelin-1 and endothelin receptor mRNA expression in normal and atherosclerotic human arteries. Biochem Biophys Res Commun 191: 1081, 1993.

    CAS  Google Scholar 

  113. Boulanger, C. M., Tanner, F. C., Bea, M. L., et al.: Oxidized low density lipoproteins induce mRNA expression and release of endothelin from human and porcine endothelium. Circ Res 70: 1191, 1992.

    PubMed  CAS  Google Scholar 

  114. Zeiher, A. M., Ihling, C., Pistorius, K., et al.: Increased tissue endothelin immunoreactivity in atherosclerotic lesions associated with acute coronary syndromes. Lancet 344: 1405, 1994.

    PubMed  CAS  Google Scholar 

  115. Zeiher, A. M., Drexler, H., Saurbier, B., et al.: Endothelium-mediated coronary blood flow modulation in humans. Effects of age, atherosclerosis, hypercholesterolemia, and hypertension. J Clin Invest 92: 652, 1993.

    PubMed  CAS  Google Scholar 

  116. Ludmer, P. L., Selwyn, A. P., Shook, T. L., et al.: Paradoxical vasoconstriction induced by acetylcholine in atherosclerotic coronary arteries. N Engl J Med 315: 1046, 1986.

    PubMed  CAS  Google Scholar 

  117. Yang, Z., Richard, V., Von, S. L., et al.: Threshold concentrations of endothelin-1 potentiate contractions to norepinephrine and serotonin in human arteries. A new mechanism of vasospasm? Circulation 82: 188, 1990.

    PubMed  CAS  Google Scholar 

  118. Toyo-oka, T., Aizawa, T., Suzuki, N., et al.: Increased plasma level of endothelin-1 and coronary spasm induction in patients with vasospastic angina pectoris. Circulation 83: 476, 1991.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lüscher, T.F., Noll, G., Boulanger, C.M. (1997). Endothelial Dysfunction after Angioplasty: A Pathway for Remodelling?. In: Lafont, A., Topol, E.J. (eds) Arterial Remodeling: A Critical Factor in Restenosis. Developments in Cardiovascular Medicine, vol 198. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6079-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6079-1_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7785-6

  • Online ISBN: 978-1-4615-6079-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics