Single Event Phenomena II

  • George C. Messenger
  • Milton S. Ash


This chapter continues the discussion of the other important facets of single event phenomena. It begins with multiple event effects where one incident single event upset (SEU)-inducing ion can produce more than one bit upset in the same memory array, for example. Following the above is a discussion of the effects of a device exposed to an ionizing dose of radiation prior to and/or during the occurrence of an SEU. The ionizing dose is usually construed, but not exclusively, as that from gamma rays, X-rays, protons, or electrons, corresponding to the particular hostile or benign environment in which the device finds itself.


Sensitive Region Memory Array Critical Charge Triple Modular Redundancy Single Event Upset 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L.D. Edmonds, “A Distribution Function for Double Bit Upsets,” EEE Trans. Nucl. Sci. NS-36 (2), 1344–1346 (1989).CrossRefGoogle Scholar
  2. 2.
    N.M. Ghoneim, R.G. Marten, J.S. Cable, and Y. Song, “The Size Effect of an Ion Charge Track on Single Event Multiple Bit Upset,” IEEE Trans. Nucl. Sci. NS-34 (6), 1305–1309 (1987).Google Scholar
  3. 3.
    G.C. Messenger, “Collection of Charge on Junction Nodes From Ion Tracks,” IEEE Trans. Nucl. Sci. NS-29 (6), 2024–2031 (1982).CrossRefGoogle Scholar
  4. 4.
    J. Bradford, “Non-Equilibrium Radiation Effects in VLSI,” IEEE Trans. Nucl. Sci. NS-25 (5) (1978).Google Scholar
  5. 5.
    H.L. Grubin, J.P. Kreskovsky, and B.C. Weinberg, “Numerical Studies of Charge Collection and Funneling in Silicon Devices,” IEEE Trans. Nucl. Sci. NS-31 (6), 1161–1166 (1984).CrossRefGoogle Scholar
  6. 6.
    J.A. Zoutendyk, L.S. Smith, and G.A. Soli, “Empirical Modeling of Single Event Upset (SEU) in NMOS Depletion Mode Load SRAM Chips,” IEEE Trans. Nucl. Sci. NS-33 (6), 1581–1585 (1986); J.A. Zoutendyk, H.R. Schwartz, and L.R. Nevill IEEE Trans. Nucl. Sci. NS-35 (6), 1644–1647 (1988).Google Scholar
  7. 7.
    R. Koga, W.A. Kolasinski, J.V. Osborn, J.H. Elder, and R. Chitty, “SEU Test Techniques for 256K Static RAMs and Comparison of Upsets Induced by Heavy Ions and Protons,” IEEE Trans. Nucl. Sci. NS-35 (6), 1638–1643 (1988).CrossRefGoogle Scholar
  8. 8.
    Y. Song, K.N. Vu, J.S. Cable, A.A. Witteles, W.A. Kolasinski, R. Koga, J.H. Elder, J.V. Osborn, R.G. Martin, and N.M. Ghoneim, “Experimental and Analytical Investigation of Single Event Multiple Bit Upsets in Polysilicon Load 64K X 1 NMOS SRAMs,” IEEE Trans. Nucl. Sci. NS-35 (6), 1673–1677 (1988).CrossRefGoogle Scholar
  9. 9.
    P.M. Carter and B.R. Wilkins, “Influences on Soft Error Rates in Static RAMs,” IEEE J. Solid State Circuits SC-22 430–436 (1987).Google Scholar
  10. 10.
    J.A. Zeutendyk, L.D. Edmonds, and L.S. Smith, “Characterization of Multiple-Bit Errors from Single Ion Tracks in Integrated Circuits,” IEEE Trans. Nucl. Sci. NS-36 (6), 2267–2274 (1989).CrossRefGoogle Scholar
  11. 11.
    G.C. Messenger and M.S. Ash The Effects of Radiation on Electronic Systems 2nd ed., Van Nostrand Reinhold, New York, 1992, Chap. 6.Google Scholar
  12. 12.
    E.G. Stassinopoulos, G.J. Brucker, O. Van Gunten, and H.S. Kim, “Variation of SEU Sensitivity of Dose Imprinted CMOS SRAMs,” IEEE Trans. Nucl. Sci. NS-36 (6), 2330–2338 (1989).CrossRefGoogle Scholar
  13. 13.
    T. Matsukawa, A. Kishide, T. Tanii, M. Koh, K. Horita, K. Hara, B. Shigeta, M. Goto, S. Matsuda, S. Kuboyama, and I. Ohdomari, “Total Dose Dependence of Soft Error Hardness in 64Kbit RAMs Evaluated by Single Ion Microprobe Technique,” IEEE Trans. Nucl. Sci. NS-41 (6), 2071–2076 (1994).CrossRefGoogle Scholar
  14. 14.
    C.L. Axness, J.R. Schwank, P.S. Winokur, J.S. Browning, R. Koga, and D.M. Fleetwood, “Single Event Upset in Irradiated 16K CM05 SRAMs,” IEEE Trans. Nucl. Sci. NS-35 (6), 1602–1607 (1988).CrossRefGoogle Scholar
  15. 15.
    A.B. Campbell and W.J. Stapor, “The Total Dose Dependence of the Single Event Upset Sensitivity of IDT Static RAMs,” IEEE Trans. Nucl. Sci. NS-31 (6), 1175–1177 (1984).CrossRefGoogle Scholar
  16. 16.
    R.C. Webb, L. Palkuti, L. Cohn, G. Kweder, and A. Constantine “The Commercial and Military Satellite Survivability Crisis,” Defense Electronics Magazine Aug.1995.Google Scholar
  17. 17.
    J.A. Adolphsen, J.L. Barth, E.G. Stassinopoulos, T. Gruner, M. Wennersten, K. LaBel, and C.M. Seidleck, “SEP Data from the APEX Cosmic Ray Upset Experiment: Predicting the Performance of Commercial Devices in Space,” Proc. Third European Conf. on Radiation And its Effects on Components and Systems, 1995.Google Scholar
  18. 18.
    C. Dufour, P. Gamier, T. Carriere, J. Beaucour, R. Ecoffier, and M. Labrunee, “Heavy Ion Induced Single Hard Errors in Submicron Memories,” IEEE Trans. Nucl. Sci. NS-39 (6), 1693–1697 (1992).CrossRefGoogle Scholar
  19. 19.
    G.H. Sandier System Reliability Engineering Prentice-Hall, Englewood Cliffs, NJ, 1963, pp. 162ff.Google Scholar
  20. 20.
    A. Tabor and E. Normand, “Single Event Upset in Avionics,” IEEE Trans. Nucl. Sci. NS-40 (2), 120–126 (1993).CrossRefGoogle Scholar
  21. 21.
    V. Pless Introduction to the Theory of Error Detecting Codes J. Wiley, New York, 1982, Chap 1.Google Scholar
  22. 22.
    J.A. Zoutendyk, H.R. Schwartz, R.K. Watson, Z. Hasnain, and L.R. Nevill, “Single Event Upset (SEU) in a DRAM With On-Chip Error Correction,” IEEE Trans. Nucl. Sci. NS-34 (6), 1310–1315 (1987).CrossRefGoogle Scholar
  23. 23.
    . R. Katz, R. Barto, P. McKerracher, B. Karkhuff, and R. Koga, “SEU Hardening of Field Programmable Gate Arrays (FPGA) for Space Application and Device Characterization IEEE Trans. Nucl. Sci. NS-41 (6), 2179–2186(1994). CrossRefGoogle Scholar
  24. 24.
    G.C. Messenger and M.S. Ash, The Effects of Radiation on Electronic Systems, 2nd ed., Van Nostrand Reinhold, New York, 1992, Section 13.2.Google Scholar
  25. 25.
    E.C. Smith, “Effects of Realistic Satellite Shielding on SEE Rates,” IEEE Trans. Nucl. Sci. NS-41 (6), 2396–2399 (1994).CrossRefGoogle Scholar
  26. 26.
    E. Normand and W.J. Stapor, “Variation in Proton Induced Upset Rates from Large Solar Hares Using an Improved SEU Model,” IEEE Trans. Nucl. Sci. NS-37 (6), 1947–1952 (1990).CrossRefGoogle Scholar
  27. 27.
    L.W. Ackerman, “Amplitude Distribution of Cosmic Ray Events in Intrinsic IR Detectors,” IEEE Trans. Nucl. Sci. NS-32 (6), 4185–4188 (1985).CrossRefGoogle Scholar
  28. 28.
    E.L. Price, P. Shapiro, J.H. Adams Jr., and E.A. Burke, “Calculation of Cosmic Ray Induced Soft Upsets and Scaling in VLSI Devices,” IEEE Trans. Nucl. Sci. NS-29 (6), 2055–2063 (1982).Google Scholar
  29. 29.
    P.J. McNulty, “Predicting Single Event Phenomena in Space,” NSRE Conf. Short Course, July 1990.Google Scholar
  30. 30.
    P.J. McNulty, W.J. Beauvais, and D.R. Roth, “Determination of SEU Parameters of NMOS and CMOS SRAMs,” IEEE Trans. Nucl. Sci. NS-38 (6), 1463–1470 (1991).CrossRefGoogle Scholar
  31. 31.
    E.G. Stassinopolous, G.J. Brucker, D.W. Nakamura, C.A. Stauffer, G.B. Gee, and J.L. Barth, “Solar Flare Proton Evaluation at Geostationary Orbits for Engineering Applications,” IEEE Trans. Nucl. Sci. NS-43 (2), 369–382 (1996).CrossRefGoogle Scholar
  32. 32.
    R.L. Pease, “Total Dose Issues for Microelectronics in Space Systems,” IEEE Trans. Nucl. Sci. NS-40 (2), 442–452 (1996).CrossRefGoogle Scholar
  33. 33.
    G.R. Hopkinson, C.J. Dale, and P.W. Marshall, “Proton Effects in Charge Coupled Devices,” IEEE Trans. Nucl. Sci. NS-40 (2), 614–627 (1996).CrossRefGoogle Scholar
  34. 34.
    L. Adams, R. Nickson, A. Kelleher, C.W. Millward, D.J. Stropel, and D. Czajkowski, “A Dosimetric Evaluation of the RADPAKTmUsing Mono-energetic Electrons and Protons,” IEEE Trans. Nucl. Sci. NS-43 (3), 1014–1017 (1996).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1997

Authors and Affiliations

  • George C. Messenger
    • 1
  • Milton S. Ash
    • 2
  1. 1.Las Vegas
  2. 2.Santa Monica

Personalised recommendations