Advertisement

Particle Penetration and Energy Deposition

  • George C. Messenger
  • Milton S. Ash
Chapter

Abstract

The penetration of particles and radiation into material is of prime importance in the determination of single event upset (SEU) and single event phenomena (SEP). This is because of the incident particle energy transfer to the device material to ionize it and thus release extraneous charge, which can ultimately be collected by memory nodes to produce SEU and other SEP.

Keywords

Energy Deposition Linear Energy Transfer Incident Particle Sensitive Volume Atomic Mass Unit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H.A. Bethe, and J. Ashkin, in Experimental Physics (E. Segre, ed.) John Wiley and Sons, New York, 1943, Vol. 1.Google Scholar
  2. 2.
    R.D. Evans The Atomic Nucleus McGraw-Hill Book Co., New York, 1955, Chap. 22.zbMATHGoogle Scholar
  3. 3.
    L.C. Northcliff, and R.F. Schilling, Nuclear Data, Vol. A7, Academic Press, New York, 1970.Google Scholar
  4. 4.
    R.E. Lapp, and H.L. Andrews Nuclear Radiation Physics Prentice-Hall, Englewood Cliffs, NJ, 1972, Chap. 10.Google Scholar
  5. 5.
    E. Segre Nuclei and Particles W.A. Benjamin, New York, 1964, Chap. 7.Google Scholar
  6. 6.
    J. Orear, A.H. Rosenfeld, and R.A. Schleuter Nuclear Physics University of Chicago Press, Chicago, 1949, Chap. 2.Google Scholar
  7. 7.
    M.J. Berger, and S.M. Seltzer, “Results of Some Recent Transport Calculations for Electrons and Bremsstrahlung,” Second Symp. on Protection Against Radiation in Space, NASA SP-71,1964.Google Scholar
  8. 8.
    B. Rossi High Energy Particles Prentice-Hall, Englewood Cliffs, NJ, 1952.Google Scholar
  9. 9.
    E.L. Petersen, J.C. Pickel, J.H. Adams, Jr., and E.C. Smith, “Rate Prediction for Single Events: A Critique,” IEEE Trans. Nucl. Sci. NS-39 (6), 1577–1599 (1992).CrossRefGoogle Scholar
  10. 10.
    W. Heinrich, “Calculation of LET Spectra of Heavy Cosmic Ray Nuclei at Various Absorber Depths,” Radiat. Effects 34 143–148 (1977).CrossRefGoogle Scholar
  11. 11.
    W.J. Stapor, P.T. McDonald, A.R. Knudson, A.B. Campbell, and B.G. Glagola, “Charge Collection in Silicon for Ions of Different Energy But the Same Linear Energy Transfer (LET) IEEE Trans. Nucl. Sci. NS-35 (6), 1585–1590 (1988).CrossRefGoogle Scholar
  12. 12.
    M.A. Xapsos, “A Spatially Restricted Linear Energy Transfer Equation,” Radiat. Res.132 282–287 (1992).CrossRefGoogle Scholar
  13. 13.
    W.J. Stapor, P.T. McDonald, A.R. Knudson, A.B. Campbell, and B.G. Glagola, “Charge Collection in Silicon for Ions of Different Energy But the Same Linear Energy Transfer (LET) IEEE Trans. Nucl. Sci. NS-35 (6), 1585–1590 (1988).CrossRefGoogle Scholar
  14. 14.
    E.L. Petersen, P. Shapiro, J.H. Adams, Jr., and, E.A. Burke, Calculation of Cosmic Ray Induced Soft Upsets and Scaling in VLSI Devices,“ IEEE Trans. Nucl. Sci. NS-29 (6), 2055–2063 (1982).CrossRefGoogle Scholar
  15. 15.
    J.H. Adams, Jr., “The Variability of Single Event Upset Rates in the Natural Environment,” IEEE Trans. Nucl. Sci. NS-30 (6), 4475–4480 (1983).CrossRefGoogle Scholar
  16. 16.
    S. Flugge Encyclopedia of Physics Springer-Verlag, Berlin 1958. Vol. 34, pp. 87ff.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1997

Authors and Affiliations

  • George C. Messenger
    • 1
  • Milton S. Ash
    • 2
  1. 1.Las Vegas
  2. 2.Santa Monica

Personalised recommendations