Skip to main content

Carnitine and Myocardial Glucose Metabolism

  • Chapter

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

Abstract

L-carnitine has an important role in the integrated regulation of energy metabolism in muscle. While the role of L-carnitine as a cofactor in the oxidation of long-chain fatty acids has been well established, it is only recently that L-carnitine has been recognized to have an additional important role in the regulation of carbohydrate metabolism. Studies primarily performed in heart tissue have shown that increasing myocardial carnitine concentration can dramatically increase both glucose and lactate oxidation. This effect of carbohydrate metabolism appears to be partly responsible for the observed beneficial effects of L-carnitine in treating a number of pathological conditions. For instance, in hypertrophied hearts and in diabetic hearts increasing tissue levels of carnitine can improve both mechanical function and glucose oxidation. In addition, during reperfusion of hearts following ischemia, L-carnitine also improves heart function and increases glucose oxidation. In many of these pathologies the benefits of L-carnitine occur even though fatty acid oxidation is not impaired, and the effects of L- carnitine are accompanied by an increase in glucose oxidation. Whether the effects of L-carnitine on myocardial metabolism are related to an increase in fatty acid oxidation or to an increase in glucose oxidation probably depends to a large extent on whether a severe tissue carnitine deficiency exists, in which case the primary effect of L-carnitine treatment is probably via an increase in fatty acid oxidation rates. If L-carnitine treatment increases tissue carnitine levels, above relatively normal levels we believe that the primary metabolic effects of L-carnitine are on glucose oxidation. In this chapter, the mechanisms by which L-carnitine alters carbohydrate metabolism will be discussed, as well as the resultant effects on contractile function.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Neely JR, Morgan HE. Relationship between carbohydrate and lipid metabolism and the energy balance of heart muscle. Ann Rev Physiol 1974; 36:413–459.

    Article  CAS  Google Scholar 

  2. Saddik M, Lopaschuk GD. Myocardial triglyceride turnover and contribution to energy substrate utilization in isolated working rat hearts. J Biol Chem 1991; 266:8162–8170.

    PubMed  CAS  Google Scholar 

  3. Bing RJ, Siegel A, Vitale A. Metabolic studies on the human heart in vivo. Studies on carbohydrate metabolism of the human heart. 1953; 15:284–296.

    CAS  Google Scholar 

  4. Patel MS, Roche TE. Molecular biology and biochemistry of pyru-vate dehydrogenase complex. FASEB J 1990; 4:3224–3233.

    PubMed  CAS  Google Scholar 

  5. McCormack JG, Denton RM. Role of Ca2+ ions in the regulation of intramitochondrial metabolism in rat heart. Biochem J 1984; 218:235–247.

    PubMed  CAS  Google Scholar 

  6. Randle PJ. Fuel selection in animals. Biochem Soc Trans 1986; 14:799–806.

    PubMed  CAS  Google Scholar 

  7. Kerbey AL, Vary TC, Randle PJ. Molecular mechanisms regulating myocardial glucose oxidation. Basic Res Cardiol 1985; 80(suppl 2):93–96.

    PubMed  CAS  Google Scholar 

  8. Murthy MSR, Pande SV. Malonyl-CoA binding site and the overt carnitine palmitoyltransferase activity reside on the opposite sides of the outer mitochondrial membrane. Proc Natl Acad Sci USA 1988; 84:378–382.

    Article  Google Scholar 

  9. McGarry JD, Woeltje KF, Kuwajima M, Foster DW. Regulation of ketogenesis and the renaissance of carnitine palmitoyltransferase. Diabetes/Metabolism Reviews 1989; 5:271–284.

    Article  PubMed  CAS  Google Scholar 

  10. McGarry JD, Mills SE, Long CS, Foster DW. Observations on the affinity for carnitine, and malonyl-CoA sensitivity, of carnitine palmitoyltransferase I in animal and human tissues. Biochem J 1983; 214:21–28.

    PubMed  CAS  Google Scholar 

  11. Weis BC, Cowan AT, Brown N, Foster DW, McGarry JD. Use of a selective inhibitor of liver carnitine palmitoyltransferase I (CPT I). allows quantification of its contribution to total CPT I activity in rat heart. J Biol Chem 1994; 269:25443–26448.

    Google Scholar 

  12. Brown NF, Weis BC, Husti JE, Foster DW. Mitochondrial carnitine palmitoyltransferase I isoform switching in the developing rat heart. J Biol Chem 1995; 270:8952–8957.

    Article  PubMed  CAS  Google Scholar 

  13. Weis BC, Esser V, Foster DW, McGarry JD. Rat heart expresses two forms of mitochondrial carnitine palmitoyltransferase I. J Biol Chem 1994; 269:18712–18715.

    PubMed  CAS  Google Scholar 

  14. Regitz-Zagrosek V, Fleck E. Myocardial carnitine deficiency in human cardiomyopathy. In: The Carnitine System. JW de Jong, R Ferrari Eds. Kluwer Academic Publishers: Dordrecht, The Netherlands, 1995; 145–166.

    Google Scholar 

  15. Regitz V, Shug AL, Fleck E. Defective myocardial carnitine metabolism in congestive heart failure secondary to dilated cardiomyopathy and to coronary, hypertensive and vascular heart diseases. Am J Cardiol 1990; 65:755–760.

    Article  PubMed  CAS  Google Scholar 

  16. Engel AG. Possible causes and effects of camitine deficency in man. In: Frenkel RS, McGarry JD, eds. Camitine Biosynthesis, Metabolism and Functions. NY: Academic Press, 1980; 271–286.

    Google Scholar 

  17. Boudin G, Mikol J, Guillard A, Engel AG. Fatal systemic camitine deficiency with lipid storage in skeletal muscle, heart, liver and kidney. J Neurol Sei 1976; 30:56–60.

    Article  Google Scholar 

  18. Lysiak W, Lilly K, Di Lisa F, Toth PP, Bieber LL. Quantification of the effect of L-camitine on the levels of acid-soluble short-chain acyl CoA and CoA in rat heart and liver mitochondria. J Biol Chem 1988; 263:1511–1516.

    Google Scholar 

  19. Lysiak W, Toth PP, Suelter CH, Bieber LL. Quantitation of the efflux of acylcamitines on the levels of acid-soluble short-chain acyl CoA and CoASH in rat heart and liver mitochondria. J Biol Chem 1986; 261:10698–13703.

    Google Scholar 

  20. Pearson DJ, Tubbs PK. Camitine and derivatives in rat tissues. Biochem J 1967; 105:953–963.

    PubMed  CAS  Google Scholar 

  21. Broderick TL, Quinney HA, Lopaschuk GD. Camitine stimulation of glucose oxidation in the fatty acid perfused isolated working rat heart. J Biol Chem 1992; 267(6):3758–3763.

    PubMed  CAS  Google Scholar 

  22. Fritz IB, Schultz SK, Srere PA. Properties of partially purified car-nitine acetyl transferase. J Biol Chem 1963; 236:2509–2517.

    Google Scholar 

  23. Uziel G, Garaveaglia B, DiDonato S. Camitine stimulation of pyru-vate dehydrogenase complex (PDHC) in isolated human skeletal muscle mitochondria. Muscle and Nerve 1988; 11:720–724.

    Article  PubMed  CAS  Google Scholar 

  24. Di Lisa F, Barbato R, Manabo R, Siliprandi N. Carnitine and car-nitine esters in mitochondrial metabolism and function. In: The Camitine System, de Jong JW, Ferrari R, eds. Kluwer Academic Publishers: Dordrecht, The Netherlands, 1995; 21–38.

    Google Scholar 

  25. Pierpont MEM, Judd D, Goldenberg IF, Rings WS, Olivari MT, Pierpont GL. Myocardial camitine in end-stage congestive heart failure. Am J Cardiol 1989; 64:56–60.

    Article  PubMed  CAS  Google Scholar 

  26. Allard MF, Schönekess BO, Henning SL, English DR, Lopaschuk GD. The contribution of oxidative metabolism and glycolysis to ATP production in the hypertrophied heart. Am J Physiol 1994; 267: H742–H750.

    PubMed  CAS  Google Scholar 

  27. el Alaoui-Talibi Z, Landormy S, Loireau A, Moravec J. Fatty acid oxidation and mechanical performance of volume-overloaded rat hearts. Am J Physiol 1992; 262:H1068–H1074.

    PubMed  Google Scholar 

  28. Broderick TL, DiDomenico D, Shug AL, Paulson DJ. Fatty acid oxidation and cardiac function in the sodium pivalate model of secondary camitine deficiency. Metabolism 1995; 44:499–505.

    Article  PubMed  CAS  Google Scholar 

  29. Broderick TL, Panagakis G, DiDomenico D, Gamble J, Lopaschuk GD, Shug AL, Paulson DJ. L-carnitine improvement of cardiac function is associated with a stimulation in glucose but not fatty acid metabolism in carnitine-deficient hearts. Cardiov Res 1995; 30: 815–820.

    CAS  Google Scholar 

  30. Broderick TL, Quinney HA, Barker CC, Lopaschuk GD. Beneficial effect of carnitine on mechanical recovery of rat hearts reperfused after a transient period of global ischemia is accompanied by a stimulation of glucose oxidation. Circulation 1993; 87:972–981.

    PubMed  CAS  Google Scholar 

  31. Vary TC, Neely JR. A mechanism for reduced myocardial carnitine content in diabetic animals. Am J Physiol 1982; 243:H154–H158.

    PubMed  CAS  Google Scholar 

  32. Garland PB, Randle PJ. Regulation of glucose uptake by muscle. 10. Effects of alloxan-diabetes, starvation, hypophysectomy and adrenalectomy and of fatty acids, ketones and pyruvate on the glyc-erol output and concentrations of free fatty acids, long chain fatty acyl coenzyme A, glycerol phosphate and citrate cycle intermediates in rat hearts and diaphragm muscles. Biochem J 1964; 93:678–687.

    PubMed  CAS  Google Scholar 

  33. Wall SR, Lopaschuk GD. Glucose oxidation rates in fatty acid-perfused isolated working hearts from diabetic rats. Biochim Biophys Acta 1989; 1006:97–103.

    PubMed  CAS  Google Scholar 

  34. Triacylglycerol turnover in isolated working hearts of acutely diabetic rats. Can J Physiol Pharmacol 1994; 72:1110–1119.

    Google Scholar 

  35. Riebel DK, O-Rourke B, Foster KA. Mechanisms for altered carnitine content in hypertrophied rat hearts. Am J Physiol 1987; 252: H561–H565.

    Google Scholar 

  36. Schönekess BO, Allard MF, Lopaschuk GD. Propionyl L-carnitine improvement of hypertrophied heart function is accompanied by an increase in carbohydrate oxidation. Circ Res 1995; 77:726–734.

    PubMed  Google Scholar 

  37. Newgard CB, McGarry JD. Metabolic coupling factors in pancreatic ß-cell signal transduction. Annu Rev Biochem 1995; 64:689–719.

    Article  PubMed  CAS  Google Scholar 

  38. Cook GA. Differences in the sensitivity of carnitine palmitoyl-trans-ferase to inhibition by malonyl-CoA are due to differences in Ki values. J Biol Chem 1984; 259:12030–12033.

    PubMed  CAS  Google Scholar 

  39. Singh B, Stakkestad JA, Bremer J, Borrebaek B. Determination of malonyl-coenzyme A in rat heart, kidney, and liver: A comparison between acetyl-coenzyme A and butyryl-coenzyme A as fatty acid synthase primers in assay procedure. Anal Biochem 1984; 138:107–111.

    Article  PubMed  CAS  Google Scholar 

  40. Saddik M, Gamble J, Witters LA, Lopaschuk GD. Acetyl-CoA car-boxylase regulation of fatty acid oxidation in the heart. J Biol Chem 1993; 268:25836–25845.

    PubMed  CAS  Google Scholar 

  41. Lopaschuk GD, Witters LA, Itoi T, Barr R, Barr A. Acetyl-CoA car-boxylase involvement in the rapid maturation of fatty acid oxidation in the newborn rabbit heart. J Biol Chem 1994; 269:25871–25878.

    PubMed  CAS  Google Scholar 

  42. Kudo N, Barr AJ, Barr RL, Desai S, Lopaschuk GD. High rates of fatty acid oxidation during reperfusion of ischemic hearts are associated with a decrease in malonyl-CoA levels due to an increase in 5’-AMP-activated protein kinase inhibition of acetyl-CoA carboxy-lase. J Biol Chem 1995; 270:17513–17520.

    Article  PubMed  CAS  Google Scholar 

  43. Lopaschuk GD, Belke DD, Gamble J, Itoi T, Schönekess BO. Regulation of fatty acid oxidation in the mammalian heart in health and disease. Biochim Biophys Acta 1991; 1213:263–276.

    Google Scholar 

  44. Mabrouk GM, Helmy IM, Thampy KG, Wakil SJ. Acute hormonal control of acetyl-CoA carboxylase: Roles of insulin, glucagon, and epinephrine. J Biol Chem 1990; 265:6330–6338.

    PubMed  CAS  Google Scholar 

  45. Wakil SJ, Titchener EB, Gibson DM. Evidence for the participation of biotin in the enzymatic synthesis of fatty acids. Biochim Biophys Acta 1958; 29:225–226.

    Article  PubMed  CAS  Google Scholar 

  46. Bianchi A, Evans JL, Iverson AJ, Nordlund AC, Watts TD, Witters LA. Identification of an isozymic forms of acetyl-CoA carboxylase. J Biol Chem 1990; 265:1502–1509.

    PubMed  CAS  Google Scholar 

  47. Thampy KG. Formation of malonyl-CoA in rat heart. J Biol Chem 1989; 264:17631–17634.

    PubMed  CAS  Google Scholar 

  48. Iverson AJ, Bianchi A, Nordlund AC, Witters LA. Immunological analysis of acetyl-CoA carboxylase mass, tissue distribution and sub-unit composition. Biochem J 1990; 269:365–371.

    PubMed  CAS  Google Scholar 

  49. Idell-Wenger JA, Grotyohann LW, Neely JR. Coenzyme A and car-nitine distribution in normal and ischemic myocardium. J Biol Chem 1978; 253:4310–4318.

    PubMed  CAS  Google Scholar 

  50. De Jong JW, Mugelli A, Di Lisa F, Ferrari R. Acute vs. chronic treatment with propionyl-L-carnitine: biochemical, hemodynamic and electrophysiological effects on rabbit heart. In: de Jong JW, Ferrari R}, eds. The Carnitine System. Kluwer Academic Publishers: Dordrecht, The Netherlands, 1995; 261–273.

    Google Scholar 

  51. Micheletti R, Schiavone A, Bianchi G. Effect of propionyl-L-carnitine on rats with experimentally induced cardiomyopathies. In: tde Jong JW, Ferrari R, eds. The Carnitine System. Kluwer Academic Publishers: Dordrecht, The Netherlands, 1995; 307–322.

    Google Scholar 

  52. Ciman M, Rossi CR, Siliprandi N. On the mechanism of the antiketogenic action of propionate and succinate in isolated rat liver mitochondria. FEBS Lett 1972; 22:8–10.

    Article  PubMed  CAS  Google Scholar 

  53. Tassani V, Catapan F, Magnanimi L, Peschechera A. Anaplerotic effect of propionyl carnitine in rat heart mitochondria. Biochem Biophys Res Commun 1994; 199:949–953.

    Article  PubMed  CAS  Google Scholar 

  54. Sundqvist KE, Vuorinen KH, Peuhkurinen KJ, Hassinen IE. Metabolic effects of propionate, hexanoate and propionylcarnitine in normoxia, ischaemia and reperfusion. Eur Heart J 1994; 15:561–570.

    PubMed  CAS  Google Scholar 

  55. Paulson DJ, Schmidt MJ, Traxler JS, Shug AL. Improvement of myo-cardial function in diabetic rats after treatment with L-carnitine. Metabolism 1984; 33:358–363.

    Article  PubMed  CAS  Google Scholar 

  56. Siliprandi N, Di Lisa F, Pivetta A, Miotto G, Siliprandi D. Transport and function of L-carnitine and L-propionylcarnitine: relevance to some cardiomyopathies and cardiac ischemia. Z Kardiol 1987; 76(suppl} 5.:34–40

    PubMed  CAS  Google Scholar 

  57. Paulson DJ, Traxler J, Schmidt M, Noonan J, Shug AL. Protection of the ischemic myocardium by L-propionylcarnitine: effects on the recovery of cardiac output after ischaemia and reperfusion, carnitine transport, and fatty acid oxidation. Card Res 1986; 20:536–541.

    Article  CAS  Google Scholar 

  58. Liedtke AJ, DeMaison L, Nellis SH. Effects of L-propionylcarnitine on mechanical recovery during reflow in intact hearts. Am J Physiol 1988; 255:H169–176.

    Google Scholar 

  59. Motterlini R, Samaja M, Tarantola M, Micheletti R, Bianchi G. Functional and metabolic effects of propionyl-L-carnitine in the isolated perfused hypertrophied rat heart. Mol Cell Biochem 1992; 116: 139–145.

    Article  PubMed  CAS  Google Scholar 

  60. Broderick TK, Quinney HA, Lopaschuk GD. L-carnitine increases glucose metabolism and mechanical function following ischaemia in diabetic rat heart. Cardiovas Res 1995; 29:373–378.

    CAS  Google Scholar 

  61. Hata K, Takasago T, Saeki A, Nishioka T, Goto Y. Stunned myocardium after rapid correction of acidosis. Circ Res 1994; 74:794–805.

    PubMed  CAS  Google Scholar 

  62. Shönekess BO, Allard MF, Lopaschuk GD. Propionyl L-carnitine improvement of hypertrophied rat heart function is associated with an increase in cardiac efficiency. Eur J Pharmacol 1995:286:155–156.

    Article  Google Scholar 

  63. Lopaschuk GD, Spafford MA, Davies NJ, Wall SR. Glucose and palmitate oxidation in isolated working rat hearts reperfused after a period of transient global ischemia. Circ Res 1990; 60:546–553.

    Google Scholar 

  64. Renstrom B, Nellis SH, Liedtke AJ. Metabolic oxidation of glucose during early reperfusion. Circ Res 1989; 65:1094–1101.

    PubMed  CAS  Google Scholar 

  65. Görge G, Chatelain P, Schaper J, Lerch R. Effect of increasing degrees of ischemic injury on myocardial oxidative metabolism early after reperfusion in isolated rat hearts. Circ Res 1991; 68:1681–1692.

    PubMed  Google Scholar 

  66. Liedtke AJ, DeMaison L, Eggleston AM, Cohen LM, Nellis SH. Changes in substrate metabolism and effects of excess fatty acids in reperfused myocardium. Circ Res 1988; 62:535–542.

    PubMed  CAS  Google Scholar 

  67. Lopaschuk GD, Wall SR, Olley PM, Davies NJ. Etomoxir, a carnitine palmitoyltransferase I inhibitor, protects hearts form fatty acid-induced injury independent of changes in long chain acylcarnitine. Circ Res 1988; 63:1036–1043.

    PubMed  CAS  Google Scholar 

  68. McVeigh JJ, Lopaschuk GD. Dichloroacetate stimulation of glucose oxidation improves recovery of ischemic rat hearts. Am J Physiol 1990; 259:H1079–H1085.

    PubMed  CAS  Google Scholar 

  69. Lopaschuk GD, Wambolt RB, Barr RL. An imbalance between gly-colysis and glucose oxidation is a possible explanation for the detrimental effects of high levels of fatty acids during aerobic perfusion of ischemie hearts. J Pharmacol Expt Ther 1993; 264:135–144.

    CAS  Google Scholar 

  70. Liu B, el Alaoui-Talibi Z, Clanachan AS, Schulz R, Lopaschuk G. Uncoupling of contractile function from mitochondrial TCA cycle activity and MV02 during reperfusion of ischemie hearts. Am J Physiol 1996; 270:H72–H80.

    PubMed  CAS  Google Scholar 

  71. Tani M. Mechanisms of Ca2+ overload in reperfused ischemie myocardium. Annu Rev Physiol 1990; 52:543–559.

    Article  PubMed  CAS  Google Scholar 

  72. Folts JD, Shug AL, Koke JR, Bittar N. Protection of the ischemie dog myocardium with carnitine. Am J Cardiol 1978; 41:1209–1215.

    Article  PubMed  CAS  Google Scholar 

  73. Hulsmann WC, Dubelaar ML, Lamers JMJ, Muccari F. Protection of acyl-carnitine and phenylmethylsulphonyl fluoride in rat heart subjected to ischemia and reperfusion. Biochem Biophys Acta 1985; 847:62–66.

    Article  PubMed  CAS  Google Scholar 

  74. Liedtke AJ, Nellis SH. Effect of carnitine in ischaemic and fatty acid supplemented swine hearts. J Clin Invest 1979; 64:440–447.

    Article  PubMed  CAS  Google Scholar 

  75. Shug Al, Thomsen JH, Folts JD, Bittar N, Klien MI, Koke JR, Huth PJ. Changes in tissue levels of carnitine and other metabolites during myocardial ischemia and anoxia. Arch Biochem Biophys 1978; 187:25–33.

    Article  PubMed  CAS  Google Scholar 

  76. Suzuki Y, Kamikawa T, Kobyashi A, Masumura Y, Yamazaki N. Effects of L-carnitine on tissue levels of acylcarnitine, acyl coenzyme A and high energy phosphate in ischemic dog hearts. Jap Circ J 1981; 45:687–694.

    Article  PubMed  CAS  Google Scholar 

  77. Oliver MF, Kurien VA, Greenwood TW. Relation between serum-free fatty acid and arryhthymia and death after myocardial infarction. Lancet 1968; 1:710–715.

    Article  PubMed  CAS  Google Scholar 

  78. Saddik M, Lopaschuk GD. Myocardial triglyceride turnover during reperfusion of isolated rat hearts subjected to a transient period of global ischemia. J Biol Chem 1992; 267(6):3825–3831.

    PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Landes Bioscience

About this chapter

Cite this chapter

Lopaschuk, G.D. (1997). Carnitine and Myocardial Glucose Metabolism. In: Carnitine Today. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6005-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6005-0_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-412-13271-1

  • Online ISBN: 978-1-4615-6005-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics