Skip to main content

Abstract

It is well recognized1−7 that the incidence of AD is greater in some families than in others; indeed about 10% of all cases of AD are thought to be inherited. In certain instances the disease may be inherited in what appears to be a classical autosomal dominant fashion, though the genetic basis for this has become apparent only during the past decade. Inheritance seems to be strongest in families where disease onset occurs before 65 years of age, though familial disease in later life may be much more common what has formerly seemed to be the case because of potentially affected individuals dying from unrelated causes before reaching the age at risk or during the early and clinically unrecognized stages of the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Heston LL, Mastri AR, Anderson VE et al. Dementia of the Alzheimer type. Arch Gen Psychiat 1981; 38: 1085–1090.

    Article  PubMed  CAS  Google Scholar 

  2. Nee LE, Polinsky RJ, Eldridge R et al. A family with histologically confirmed Alzheimer’s disease. Arch Neurol 1983; 40: 203–208.

    Article  PubMed  CAS  Google Scholar 

  3. Heyman A, Wilkinson WE, Hurwitz BJ et al. Alzheimer’s disease: Genetic aspects and associated clinical disorders. Ann Neurol 1983; 14: 507–515.

    Article  PubMed  CAS  Google Scholar 

  4. Breitner JCS, Silverman JM, Mohs RC et al. Familial aggregation in Alzheimer’s disease: comparison of risk among relatives of early-and late-onset cases, and among male and female relatives in successive generations. Neurology 1988; 38: 207–212.

    Article  PubMed  CAS  Google Scholar 

  5. Huff FJ, Auerbach J, Chakravarti A et al. Risk of dementia in relatives of patients with Alzheimer’s disease. Neurology 1988; 38: 786–790.

    Article  PubMed  CAS  Google Scholar 

  6. Bird TD, Sumi SM, Nemens EJ et al. Phenotypic heterogeneity in familial Alzheimer’s disease: A study of 24 kindreds. Ann Neurol 1989; 25: 12–25.

    Article  PubMed  CAS  Google Scholar 

  7. Mayeux R, Stern Y, Spanton S. Heterogeneity in dementia of the Alzheimer type: evidence of subgroups. Neurology 1985; 35: 453–461.

    Article  PubMed  CAS  Google Scholar 

  8. Levy-Lahad E, Wijsman EM, Nemens E et al. A familial Alzheimer’s disease locus on chromosome 1. Science 1995; 269: 970–973.

    Article  PubMed  CAS  Google Scholar 

  9. Schellenberg GD, Bird TD, Wijsman E et al. Genetic linkage evidence for a familial Alzheimer’s disease locus on chromosome 14. Science 1992; 258: 668–671.

    Article  PubMed  CAS  Google Scholar 

  10. Mullan M, Houlden H, Windelspecht M et al. A locus for familial early onset Alzheimer’s disease on the long arm of chromosome 14, proximal to α-antichymotrypsin. Nature Genet 1992; 2: 340–342.

    Article  PubMed  CAS  Google Scholar 

  11. Van Broeckhoven C, Backhovens H, Cruts M et al. Mapping of a gene predisposing to early onset Alzheimer’s disease to chromosome 14q 24.3. Nature Genet 1992; 2: 335–339.

    Article  PubMed  Google Scholar 

  12. St George-Hyslop PH, Haines J, Rogaev E et al. Genetic evidence for a novel familial Alzheimer’s disease locus on chromosome 14. Nature Genet 1992; 2: 330–334.

    Article  PubMed  CAS  Google Scholar 

  13. Schellenberg GD, Boehinke M, Wijsman EM et al. Genetic association and linkage analysis of the apolipoprotein CII locus and familial Alzheimer’s disease. Ann Neurol 1992; 31: 223–227.

    Article  PubMed  CAS  Google Scholar 

  14. Goate A, Chartier-Harlin MC, Mullan M et al. Segregation of a missense mutation in the amyloid precursor gene with familial Alzheimer’s disease. Nature 1991; 349: 704–706.

    Article  PubMed  CAS  Google Scholar 

  15. Mullan M, Crawford F, Axelman K et al. A pathogenic mutation for probable Alzheimer’s disease in the APP gene at the N-terminus of β-amyloid. Nature Genet 1992; 1: 345–347.

    Article  PubMed  CAS  Google Scholar 

  16. Lannfelt L, Bogdanovic N, Appelgren M et al. Amyloid precursor protein mutation causes Alzheimer’s disease in a Swedish family. Neurosci Lett 1994; 168: 254–256.

    Article  PubMed  CAS  Google Scholar 

  17. Chartier-Harlin MC, Crawford F, Houlden H et al. Early onset Alzheimer’s disease caused by mutations at codon 717 of the β-amyloid precursor protein gene. Nature 1991; 353: 844–845.

    Article  PubMed  CAS  Google Scholar 

  18. Naruse S, Igarashi S, Aoki K et al. Missense mutation val→ile in exon 17 of amyloid precursor protein gene in Japanese familial Alzheimer’s disease. Lancet 1991; 337: 978–979.

    Article  PubMed  CAS  Google Scholar 

  19. Yoshizawa T, Komatsuzaki Y, Iwamoto H et al. Screening of the mis-sense mutation producing the 717 val→ile substitution in the amyloid precursor protein in Japanese familial and sporadic Alzheimer’s disease. J Neurol Sci 1993; 117: 12–15.

    Article  PubMed  CAS  Google Scholar 

  20. Karlinsky H, Vaula G, Haines JL et al. Molecular and prospective phenotypic characterization of a pedigree with familial Alzheimer’s disease and a missense mutation in codon 717 of the β-amyloid precursor protein gene. Neurology 1992; 42: 1445–1453.

    Article  PubMed  CAS  Google Scholar 

  21. Fidani L, Rooke K, Chartier-Harlin MC et al. Screening for mutations in the open reading frame and promoter of the β-amyloid precursor protein gene in familial Alzheimer’s disease: identification of a further family with APP717 Val→Ile. Hum Molec Genet 1992; 13: 165–168.

    Article  Google Scholar 

  22. Murrell J, Farlow M, Ghetti B et al. A mutation in the amyloid precursor protein associated with hereditary Alzheimer’s disease. Science 1991; 254: 97–99.

    Article  PubMed  CAS  Google Scholar 

  23. Mullan M, Tsuji S, Miki T et al. Clinical comparison of Alzheimer’s disease in pedigrees with the codon 717 val→ile mutation in the amyloid precursor protein gene. Neurobiol Aging 1993; 14: 407–419.

    Article  PubMed  CAS  Google Scholar 

  24. Kennedy AM, Newman S, McCaddon A et al. Familial Alzheimer’s disease. Brain 1993; 116: 309–324.

    Article  PubMed  Google Scholar 

  25. St George-Hyslop P, Crapper-McLachlan D, Tuda T et al. Alzheimer’s disease and possible gene interaction. Science 1994; 263: 537.

    Google Scholar 

  26. Van Broeckhoven C, Haan J, Bakker E et al. Amyloid β protein precursor gene and hereditary cerebral hemorrhage with amyloidosis (Dutch). Science 1990; 248: 1120–1128.

    Article  PubMed  Google Scholar 

  27. Levy E, Carman MD, Fernandez-Madrid IJ et al. Mutation of the Alzheimer’s disease amyloid gene in hereditary cerebral haemorrhage, Dutch type. Science 1990; 248: 1124–1126.

    Article  PubMed  CAS  Google Scholar 

  28. Van Duinen SG, Castano EM, Prelli F et al. Hereditary cerebral haemorrhage with amyloidosis in patients of the Dutch origin is related to Alzheimer disease. Proc Natl Acad Sci (USA) 1987; 84: 5991–5994.

    Article  Google Scholar 

  29. Hendriks L, Van Duijn CM, Cras P et al. Presenile dementia and cerebral haemorrhage linked to a mutation at codon 692 of the β-amyloid precursor protein gene. Nature Genet 1992; 1: 218–221.

    Article  PubMed  CAS  Google Scholar 

  30. Peacock ML, Murman DL, Sima AAF et al. Novel amyloid precursor protein gene mutation (codon 665Asp) in a patient with late-onset Alzheimer’s disease. Ann Neurol 1994; 35: 432–438.

    Article  PubMed  CAS  Google Scholar 

  31. Peacock ML, Warren JT, Roses AD et al. Novel polymorphism in A4-region of amyloid precursor protein gene in a patient without Alzheimer’s disease. Neurology 1993; 43: 1254–1256.

    Article  PubMed  CAS  Google Scholar 

  32. Forsell C, Lannfelt L. Amyloid precursor protein mutation at codon 713 (Ala→Val) does not cause schizophrenia: non-pathogenic variant found at codon 705 (silent). Neurosci Lett 1995; 184: 90–93.

    Article  PubMed  CAS  Google Scholar 

  33. Adroer R, Lopez-Acedo C, Olivia R et al. A novel silent variant at codon 711 and a variant at codon 708 of the APP sequence detected in Spanish Alzheimer and control cases. Neurosci Lett 1993; 150: 33–34.

    Article  PubMed  CAS  Google Scholar 

  34. Balbin M, Abrahamson M, Gustafson L et al. A novel mutation in the β-protein coding region of the amyloid β-protein precursor (APP) gene. Hum Genet 1992; 89: 580–582.

    Article  PubMed  CAS  Google Scholar 

  35. Kamino K, Orr HT, Payami H et al. Linkage and mutational analysis of familial Alzheimer disease kindreds for the APP gene region. Am J Hum Genet 1992; 51: 998–1014.

    PubMed  CAS  Google Scholar 

  36. Jones CT, Morris S, Yates CM et al. Mutation in codon 713 of the β-amyloid precursor protein gene presenting with schizophrenia. Nature Genet 1992; 1: 306–309.

    Article  PubMed  CAS  Google Scholar 

  37. Zubenko GS, Farr J, Stiffler JS et al. Clinically-silent mutation in the putative iron-responsive element in exon 17 of the β-amyloid precursor protein gene. J Neuropathol Exp Neurol 1992; 51: 459–463.

    Article  PubMed  CAS  Google Scholar 

  38. Ghetti B, Murrell J, Benson MD et al. Spectrum of amyloid β-protein immunoreactivity in hereditary Alzheimer’s disease with a guanine to thymine missense change at position 1924 of the APP gene. Brain Res 1992; 571: 133–139.

    Article  PubMed  CAS  Google Scholar 

  39. Lantos PL, Luthert PJ, Hanger D et al. Familial Alzheimer’s disease with the amyloid precursor protein position 717 mutation and sporadic Alzheimer’s disease have the same cytoskeletal pathology. Neurosci Lett 1992; 137: 221–224.

    Article  PubMed  CAS  Google Scholar 

  40. Lantos PL, Ovenstone IMK, Johnson J et al. Lewy bodies in the brain of two members of a family with the 717 (val to ile) mutation of the amyloid precursor protein gene. Neurosci Lett 1994; 172: 77–79.

    Article  PubMed  CAS  Google Scholar 

  41. Mann DMA, Jones D, Snowden JS et al. Pathological changes in the brain of a patient with familial Alzheimer’s disease having a missense mutation at codon 717 in the amyloid precursor protein gene. Neurosci Lett 1992; 137: 225–228.

    Article  PubMed  CAS  Google Scholar 

  42. Hanger DP, Mann DMA, Neary D et al. Tau pathology in a case of familial Alzheimer’s disease with a valine to glycine mutation at position 717 in the amyloid precursor protein. Neurosci Lett 1992; 145: 178–180.

    Article  PubMed  CAS  Google Scholar 

  43. Cairns NJ, Chadwick A, Lantos PL et al. βA4 protein deposition in familial Alzheimer’s disease with the mutation in codon 717 of the β/A4 amyloid precursor protein gene and sporadic Alzheimer’s disease. Neurosci Lett 1993; 149: 137–140.

    Article  PubMed  CAS  Google Scholar 

  44. Schmechel D, Saunders AM, Strittmatter WJ et al. Increased amyloid β peptide deposition in cerebral cortex as a consequence of apolipoprotein E genotype in late-onset Alzheimer disease. Proc Natl Acad Sci (USA) 1993; 90: 9649–9653.

    Article  CAS  Google Scholar 

  45. Mann DMA, Iwatsubo T, Ihara Y et al. Predominant deposition of Aβ42(43) in plaques in cases of Alzheimer’s disease and hereditary cerebral haemorrhage associated with mutations in the amyloid precursor protein gene. Am J Pathol 1996; 148: 1257–1266.

    PubMed  CAS  Google Scholar 

  46. Hook EB. Down’s syndrome: Its frequency in human populations and some factors pertinent to variations in rats. In: de la Cruz FF, Gerald PS, eds. Trisomy 21 (Down’s syndrome): Research Perspectives. Baltimore: Baltimore University Park Press, 1981: 3–68.

    Google Scholar 

  47. Rumble B, Retallack R, Hilbich C et al. Amyloid (A4) protein and its precursor in Down’s syndrome and Alzheimer’s disease. N Engl J Med 1989; 320: 1446–1452.

    Article  PubMed  CAS  Google Scholar 

  48. Sherrington R, Rogaev EI, Liang Y et al. Cloning of a novel gene bearing missense mutations in early onset familial Alzheimer’s disease. Nature 1995; 375: 754–760.

    Article  PubMed  CAS  Google Scholar 

  49. Clark RF, Hutton M, Fuldner R et al. The structure of the presenilin 1 (S182) gene and identification of six novel mutations in early onset AD families. Nature Genet 1995; 11: 219–222.

    Article  CAS  Google Scholar 

  50. Wasco W, Pettingell WP, Jondro PD et al. Familial Alzheimer’s chromosome 14 mutations. Nature Medicine 1995; 1: 848.

    Google Scholar 

  51. Perez-Tur J, Frodlich S, Prihar G et al. A mutation in Alzheimer’s disease destroying a splice acceptor site in the presenilin-1 gene. NeuroReport 1996; 7: 204–207.

    Google Scholar 

  52. Perez-Tur J, Croxton R, Wright C et al. A further presenilin 1 mutation in the exon 8 cluster in familial Alzheimer’s disease. Neurodegeneration 1996; 5: 207–212.

    Article  PubMed  CAS  Google Scholar 

  53. Sorbi S, Nacmias B, Forleo P et al. Missense mutation of S182 gene in Italian families with early-onset Alzheimer’s disease. Lancet 1995; 346: 439–440.

    Article  PubMed  CAS  Google Scholar 

  54. Campion D, Flaman J-M, Brice A et al. Mutations of the presenilin 1 gene in families with early-onset Alzheimer’s disease. Hum Molec Genet 1995; 4: 2373–2377.

    Article  PubMed  CAS  Google Scholar 

  55. Cruts M, Backhovens H, Wang S-Y et al. Molecular genetic analysis of familial early-onset Alzheimer’s disease linked to chromosome l4q 24.3. Hum Molec Genet 1995; 4: 2363–2371.

    Article  PubMed  CAS  Google Scholar 

  56. Tanahashi H, Mitsunaga Y, Takahashi K et al. Missense mutation of S182 gene in Japanese familial Alzheimer’s disease. Lancet 1995; 346: 440.

    Google Scholar 

  57. Hutton M, Busfield F, Wragg M et al. Complete analysis of the presenilin 1 gene in early onset Alzheimer’s disease. Neuro-Report 1996; 7: 801–805.

    CAS  Google Scholar 

  58. Botova K, Vitek M, Mitsuda H et al. Mutation analysis of presenilin 1 gene in Alzheimer’s disease. Lancet 1996; 347: 130–131.

    Article  Google Scholar 

  59. Levy-Lahad E, Wasco W, Poorkaj P et al. Candidate gene for the chromosome 1 familial Alzheimer’s disease locus. Science; 269: 973–977.

    Google Scholar 

  60. Rogaev EI, Sherrington R, Rogaeva EA. Familial Alzheimer’s disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer’s disease type 3 gene. Nature 1995; 376: 775–778.

    Article  PubMed  CAS  Google Scholar 

  61. Martin JJ, Gheuens J, Bruyland K et al. Early onset Alzheimer’s disease in 2 large Belgian families. Neurology 1991; 41: 62–68.

    Article  PubMed  CAS  Google Scholar 

  62. Lampe TH, Bird TD, Nochlin D et al. Phenotype of chromosome 14-linked familial Alzheimer’s disease in a large kindred. Ann Neurol 1994; 36: 368–378.

    Article  PubMed  CAS  Google Scholar 

  63. Haltia M, Viitanen M, Sulkava R et al. Chromosome 14-encoded Alzheimer’s disease: genetic and clinicopathological description. Ann Neurol 1994; 36: 362–367.

    Article  PubMed  CAS  Google Scholar 

  64. Mann DMA, Iwatsubo T, Cairns NJ et al. Amyloid (Aβ) deposition in chromosome 14-linked Alzheimer’s disease: predominance of Aβ42(43). Ann Neurol 1996; 40: 149–156.

    Article  PubMed  CAS  Google Scholar 

  65. Corder EH, Saunders AM, Strittmatter WJ et al. Gene dose of apolipoprotein E Type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 1993; 261: 921–923.

    Article  PubMed  CAS  Google Scholar 

  66. Saunders AM, Schmader K, Breitner JCS et al. Apolipoprotein E E4 allele distribution in late onset Alzheimer’s disease and in other amyloid forming diseases. Lancet 1993; 342: 710–711.

    Article  PubMed  CAS  Google Scholar 

  67. Saunders AM, Strittmatter WJ, Schmechel D et al. Association of Apolipoprotein E4 with late-onset familial and sporadic Alzheimer’s disease. Neurology 1993; 43: 1467–1472.

    Article  PubMed  CAS  Google Scholar 

  68. Strittmatter WJ, Saunders AM, Schmechel D et al. Apolipoprotein E: high-avidity binding to β-amyloid and increased frequency of type 4 allelle in late-onset familial Alzheimer’s disease. Proc Natl Acad Sci (USA) 1993; 90: 1977–1981.

    Article  CAS  Google Scholar 

  69. Poirier J, Davignon J, Bouthillier D et al. Apolipoprotein polymorphism and Alzheimer’s disease. Lancet 1993; 342: 697–699.

    Article  PubMed  CAS  Google Scholar 

  70. Payami H, Kaye J, Heston LL et al. Apolipoprotein E genotype and Alzheimer’s disease. Lancet 1993; 342: 738.

    Article  PubMed  CAS  Google Scholar 

  71. Noguchi S, Murakami K, Yamada N. Apolipoprotein E genotype and Alzheimer’s disease. Lancet 1993; 342: 737.

    Google Scholar 

  72. Rebeck GW, Reiter JS, Strickland DK et al. Apolipoprotein E in sporadic Alzheimer’s disease: Allelic variation and receptor interactions. Neuron 1993; 11: 575–580.

    Article  PubMed  CAS  Google Scholar 

  73. Houlden H, Crook R, Duff K et al. Confirmation that the apolipoprotein E4 allele is associated with late onset familial Alzheimer’s disease. Neurodegeneration 1993; 2: 283–288.

    Google Scholar 

  74. Mayeux R, Stern Y, Ottman R et al. The Apolipoprotein E4 allele in patients with Alzheimer’s disease. Ann Neurol 1993; 34: 752–754.

    Article  PubMed  CAS  Google Scholar 

  75. Pickering-Brown SM, Roberts D, Owen F et al. Apolipoprotein E4 alleles and non-Alzheimer forms of dementia. Neurodegeneration 1994; 3: 95–96.

    Google Scholar 

  76. Sorbi S, Nacmias B, Forleo P et al. ApoE allele frequencies in Italian familial and sporadic Alzheimer’s disease. Neurosci Lett 1994; 177: 100–102.

    Article  PubMed  CAS  Google Scholar 

  77. St Clair D, Norrman J, Perry R et al. Apolipoprotein E4 allele frequency in patients with Lewy body dementia, Alzheimer’s disease and age matched controls. Neurosci Lett 1994; 176: 45–46.

    Article  PubMed  CAS  Google Scholar 

  78. West HL, Rebeck GW, Hyman BT. Frequency of the apolipoprotein E, E2 allele is diminished in sporadic Alzheimer disease. Neurosci Lett 1994; 175: 46–48.

    Article  PubMed  CAS  Google Scholar 

  79. Zubenko GS, Stiffler S, Stabler S et al. Association of the apolipoprotein E e4 allele with clinical subtypes of autopsy-confirmed Alzheimer’s disease. Am J Med Genet 1994; 54: 199–205.

    Article  PubMed  CAS  Google Scholar 

  80. van Duijn CM, de Knijff P, Cruts M et al. Apolipoprotein E4 allele in a populationbased study of early-onset Alzheimer’s disease. Nature Genet 1994; 7: 74–78.

    Article  PubMed  Google Scholar 

  81. Chartier-Harlin MC, Parfitt M, Legrain S et al. Apolipoprotein E, E4 allele as a major risk factor for sporadic early and late-onset form of Alzheimer’s disease. Hum Molec Genet 1994; 3: 569–574.

    Article  PubMed  CAS  Google Scholar 

  82. Okuizumi K, Onodera O, Tanaka H et al. ApoE-e4 and early onset Alzheimer’s disease. Nature Genet 1994; 7: 10–11.

    Article  PubMed  CAS  Google Scholar 

  83. Perez-Tur J, Campion D, Martinez M et al. Evidence for apolipoprotein E e4 association in early-onset Alzheimer’s patients with late-onset relatives. Am J Med Genet 1995; 60: 550–553.

    Article  PubMed  CAS  Google Scholar 

  84. Wragg M, Hutton M, Talbot C et al. Genetic association between an intronic polymorphism in the presenilin-1 gene and late onset Alzheimer’s disease. Lancet 1996; 347: 509–512.

    Article  PubMed  CAS  Google Scholar 

  85. Talbot CJ, Houlden H, Craddock N et al. Polymorphism in AACT gene may lower age of onset of Alzheimer’s disease. NeuroReport 1996; 7: 534–536.

    Article  PubMed  CAS  Google Scholar 

  86. Kamboh MI, Sanghera DK, Ferrell RE et al. APOE e4-associated Alzheimer’s disease risk is modified by α-antichymotrypsin polymorphism. Nature Genet 1995; 10: 486–488.

    Article  PubMed  CAS  Google Scholar 

  87. Okuizumi K, Onodera O, Namba Y et al. Genetic association of the very low density lipoprotein (VLDL) receptor gene with sporadic Alzheimer’s disease. Nature Genet 1995; 11: 207–209.

    Article  PubMed  CAS  Google Scholar 

  88. Bird TD, Lampe TH, Nemens EJ et al. Familial Alzheimer’s disease in American descendants of the Volga Germans: probable genetic founder effect. Ann Neurol 1988; 23: 25–31.

    Article  PubMed  CAS  Google Scholar 

  89. Mann DMA, Iwatsubo T, Nochlin D et al. Amyloid (Aβ) protein deposition in chromosome 1 linked Alzheimer’s disease-the Volga German kindreds. Ann Neurol 1996; (In press):.

    Google Scholar 

  90. Kennedy AM, Newman SK, Frackowiak RSJ et al. Chromosome 14 linked familial Alzheimer’s disease: A clinico-pathological study of a single pedigree. Brain 1995; 118: 185–205.

    Article  PubMed  Google Scholar 

  91. Higgins LS, Cordell B. Genetically engineered animal models of human neurodegenerative diseases. Neurodegeneration 1995; 4: 117–129.

    Article  PubMed  CAS  Google Scholar 

  92. Quon D, Wang Y, Catalano R et al. Formation of β amyloid protein in brains of transgenic mice. Nature 1991; 352: 239–441.

    Article  PubMed  CAS  Google Scholar 

  93. Higgins LS, Holtzman DM, Rabin J et al. Transgenic mouse brain histopathology resembles early Alzheimer’s disease. Ann Neurol 1994; 35: 598–607.

    Article  PubMed  CAS  Google Scholar 

  94. Higgins LS, Rodems JM, Catalano C et al. Early Alzheimer’s disease-like histopathology increases in frequency with age in mice transgenic for β-APP751. Proc Natl Acad Sci (USA) 1995; 92: 4402–4406.

    Article  CAS  Google Scholar 

  95. Johnson SA, McNeil T, Cordell B et al. Relationship of neuronal APP751/APP695 in mRNA ratios to neuritic plaque density in Alzheimer’s disease. Science 1990; 248: 854–857.

    Article  PubMed  CAS  Google Scholar 

  96. Games D, Adams D, Alessandrini R et al. Alzheimer-type neuropathology in transgenic mice overexpressing V717F β amyloid precursor protein. Nature 1995; 373: 523–527.

    Article  PubMed  CAS  Google Scholar 

  97. Cai X-D, Golde TE, Younkin SG. Release of excess amyloid β protein from a mutant amyloid β protein precursor. Science 1993; 259: 514–516.

    Article  PubMed  CAS  Google Scholar 

  98. Suzuki N, Cheung TT, Cai X-D et al. An increased percentage of long amyloid β protein secreted by familial amyloid β protein precursor (βAPP717) mutants. Science 1994; 264: 1336–1340.

    Article  PubMed  CAS  Google Scholar 

  99. Jarrett JT, Berger EP, Lansbury PT. The carboxy terminus of the β-amyloid protein is critical for the seeding of amyloid formation. Implications for the pathogenesis of Alzheimer’s disease. Biochemistry 1993; 32: 4693–4697.

    CAS  Google Scholar 

  100. Iwatsubo T, Odaka N, Suzuki N et al. Visualization of Aβ42(43)-positive and Aβ40-positive senile plaques with end-specific Aβmonclonal antibodies: Evidence that an initially deposited species is Aβ1–42(43). Neuron 1994; 13: 45–53.

    Article  PubMed  CAS  Google Scholar 

  101. Tamaoka A, Odaka A, Ishibashi Y et al. APP717 mis-sense mutation affects the ratio of amyloid β protein species (Aβ1–42/43 and Aβ1–40) in familial Alzheimer’s disease brain. J Biol Chem 1994; 269: 32721–32724.

    PubMed  CAS  Google Scholar 

  102. Citron M, Oltersdorf T, Haass C et al. Mutation of the β-amyloid precursor protein in familial Alzheimer’s disease increases β-protein production. Nature 1992; 360: 672–674.

    Article  PubMed  CAS  Google Scholar 

  103. Dovey HF, Suomesaari-Chrysler S, Lieberburg I et al. Cells with a familial Alzheimer’s disease mutation produce authentic β-peptide. NeuroReport 1993; 4: 1039–1042.

    Article  PubMed  CAS  Google Scholar 

  104. Felsenstein KM, Hunihan LW, Roberts SB. Altered cleavage and secretion of a recombinant β-APP bearing the Swedish familial Alzheimer’s disease mutation. Nature Genet 1994; 6: 251–256.

    Article  PubMed  CAS  Google Scholar 

  105. Johnston JA, Cowburn RF, Norgren S et al. Increased β amyloid release and levels of amyloid precursor protein (APP) in fibroblast cell lines obtained from family members with the Swedish APP670.671 mutation. FEBS Lett 1994; 354: 274–278.

    Article  PubMed  CAS  Google Scholar 

  106. Lo ACY, Haass C, Wagner SL et al. Metabolism of the “Swedish” amyloid precursor protein variant in Madin-Darby canine kidney cells. J Biol Chem 1994; 269: 30966–30973.

    PubMed  CAS  Google Scholar 

  107. De Strooper B et al. Basolateral secretion of amyloid precursor protein in Madin-Darby canine kidney cells is disturbed by alterations of intracellular pH and by introducing a mutation associated with familial Alzheimer’s disease. J Biol Chem 1995; 270: 4058–4065.

    Article  PubMed  Google Scholar 

  108. Haass C, Lemere CA, Capell A et al. The Swedish mutation causes early-onset Alzheimer’s disease by β-secretase cleavage within the secretory pathway. Nature Medicine 1995; 1: 1291–1296.

    Article  PubMed  CAS  Google Scholar 

  109. Haass C, Koo EH, Mellon A et al. Targeting of cell-surface β-amyloid precursor protein to lysosomes: alternative processing into amyloid bearing fragments. Nature 1992; 357: 500–502.

    Article  PubMed  CAS  Google Scholar 

  110. Estus S, Golde TE, Kunishita T et al. Potentially amyloidogenic carboxy-terminal derivatives of the amyloid protein precursor. Science 1992; 255: 726–728.

    Article  PubMed  CAS  Google Scholar 

  111. Golde TE, Estus S, Younkin LH et al. Processing of the amyloid protein precursor to potentially amyloidogenic derivatives. Science 1992; 255: 728–730.

    Article  PubMed  CAS  Google Scholar 

  112. Naslund J, Schierhorn A, Hellman U et al. Relative abundance of Alzheimer Aβamyloid peptide variants in Alzheimer disease and normal aging. Proc Natl Acad Sci (USA) 1994; 91: 8378–8382.

    Article  CAS  Google Scholar 

  113. Iwatsubo T, Mann DMA, Odaka A et al. Amyloid β protein (Aβ) deposition: Aβ42(43) precedes Aβ40 in Down syndrome. Ann Neurol 1995; 37: 294–299.

    Article  PubMed  CAS  Google Scholar 

  114. Mann DMA, Iwatsubo T, Fukumoto H et al. Microglial cells and amyloid β protein (Aβ) deposition; association with Aβ40 containing plaques. Acta Neuropath 1995; 90: 472–477.

    Article  PubMed  CAS  Google Scholar 

  115. Mann DMA, Iwatsubo T, Pickering-Brown SM et al. Preferential deposition of amyloid β protein (Aβ) in the form Aβ40 in Alzheimer’s disease is associated with a gene dosage effect at the Apolipoprotein E E4 allele. Neurosci Lett 1996; in press.

    Google Scholar 

  116. Kida E, Wisniewski KE, Wisniewski HM. Early amyloid-β deposits show different immunoreactivity to the amino-and carboxy-terminal regions of β-peptide in both Alzheimer’s disease and Down’s syndrome brain. Neurosci Lett 1995; 193: 1–4.

    Article  Google Scholar 

  117. Lemere CA, Blusztajn JK, Yamaguchi H et al. Sequence of deposition of heterogeneous amyloid β-peptides and APO E in Down syndrome: Implications for initial events in amyloid plaque formation. Neurobiol Dis 1996; 3: 16–32.

    Article  PubMed  CAS  Google Scholar 

  118. Teller JK, Russo C, de Busk LM et al. Presence of soluble amyloid β peptide precedes amyloid plaque formation in Down’s syndrome. Nature Medicine 1996; 2: 93–95.

    Article  PubMed  CAS  Google Scholar 

  119. Anwar R, Moynihan TP, Ardley H et al. Molecular analysis of the presenilin 1 (S182) gene in’ sporadic’ cases of Alzheimer’s disease: identification and characterization of unusual splice variants. J Neurochem 1996; 66: 1774–1777.

    Article  PubMed  CAS  Google Scholar 

  120. Sahara N, Yahagi Y-I, Takagi H et al. Identification and characterization of presenilin 1–467, 1–463 and 1–374. FEBS Lett 1996; 381: 7–11.

    Article  PubMed  CAS  Google Scholar 

  121. Suzuki T, Nishiyama K, Murayama S et al. Regional and cellular presenilin I gene expression in human and rat tissues. Biochem Biophys Res Commun 1996; 219: 708–713.

    Article  PubMed  CAS  Google Scholar 

  122. Kovacs DM, Fausett HJ, Page KJ et al. Alzheimer-associated presenilins 1 and 2: Neuronal expression in brain and localization to intracellular membranes in mammalian cells. Nature Medicine 1996; 2: 224–229.

    Article  PubMed  CAS  Google Scholar 

  123. Barton AJL, Crook BW, Karran EH et al. Alteration in brain presenilin 1 mRNA expression in early onset familial Alzheimer’s disease. Neurodegeneration 1996; 5: 213–218.

    Article  PubMed  CAS  Google Scholar 

  124. Ward RV, Davis JB, Gray CW et al. Presenilin-1 is processed into two major cleavage products in neuronal cell lines. Neurodegeneration 1996; (In press):.

    Google Scholar 

  125. Thinakaran G, Borchelt DR, Lee MK et al. Endoproteolysis of presenilin 1 and accumulation of processed derivatives in vivo. Neuron 1996; 17: 181–190.

    Article  PubMed  CAS  Google Scholar 

  126. Scheuner D, Eckman C, Jensen M et al. The amyloid β protein deposited in the senile plaques of Alzheimer’s disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer’s disease. Nature Medicine 1996; 2: 864–870.

    Article  PubMed  CAS  Google Scholar 

  127. Corder EH, Saunders AM, Risch NJ et al. Protective effect of apolipoprotein E type 2 allele decreases risk of late onset Alzheimer’s disease. Nature Genet 1994; 7: 180–184.

    Article  PubMed  CAS  Google Scholar 

  128. Talbot C, Lendon C, Craddock N et al. Protection against Alzheimer’s disease with apoE e2. Lancet 1994; 343: 1432–1433.

    Article  PubMed  CAS  Google Scholar 

  129. Van Broeckhoven C, Backhovens H, Cruts M et al. APOE genotype does not modulate age of onset in families with chromosome 14 encoded Alzheimer’s disease. Neurosci Lett 1994; 169: 179–180.

    Article  PubMed  Google Scholar 

  130. Hardy J, Houlden H, Collinge J et al. Apolipoprotein E genotype and Alzheimer’s disease. Lancet 1993; 342: 737–738.

    Article  Google Scholar 

  131. Nacmias B, Latorraca S, Piersanti P et al. ApoE genotype and familial Alzheimer’s disease: a possible influence on age of onset in APP717 Val→Ile mutated families. Neurosci Lett 1995; 183: 1–3.

    Article  PubMed  CAS  Google Scholar 

  132. Haan J, van Broeckhoven C, van Duijn CM et al. The apolipoprotein E e4 allele does not influence the clinical expression of the amyloid precursor protein gene codon 693 or 692 mutations. Ann Neurol 1994; 36: 434–437.

    Article  PubMed  CAS  Google Scholar 

  133. Royston MC, Mann DMA, Pickering-Brown S et al. ApoE2 allele promotes longevity and protects patients with Down’s syndrome from the development of dementia. Neuro-Report 1994; 5: 2583–2585.

    CAS  Google Scholar 

  134. Wisniewski T, Morelli L, Wegiel J et al. The influence of Apolipoprotein E isotypes on Alzheimer’s disease pathology in 40 cases of Down’s syndrome. Ann Neurol 1995; 37: 136–138.

    Article  PubMed  CAS  Google Scholar 

  135. van Gool WA, Evenhuis HM, van Duijn CM. A case-control study of apolipoprotein E genotypes in Alzheimer’s disease associated with Down’s syndrome. Ann Neurol 1995; 38: 225–230.

    Article  PubMed  Google Scholar 

  136. Schachter F, Faure-Delanef L, Guenot F et al. Genetic associations with human longevity at the APOE and ACE loci. Nature Genet 1994; 6: 29–31.

    Article  PubMed  CAS  Google Scholar 

  137. Lannfelt L, Lilius L, Nastase M et al. Lack of association between apolipoprotein E allele e4 and sporadic Alzheimer’s disease. Neurosci Lett 1994; 169: 175–178.

    Article  PubMed  CAS  Google Scholar 

  138. Henderson AS, Easteal S, Jorm AF et al. Apolipoprotein E allele e4, dementia, and cognitive decline in a population sample. Lancet 1995; 346: 1887–1890.

    Google Scholar 

  139. Sobel E, Louhija J, Sulkava R et al. Lack of association of the apolipoprotein E allele e4 with late-onset Alzheimer’s disease in Finnish centenarians. Neurology 1995; 45: 903–907.

    Article  PubMed  CAS  Google Scholar 

  140. Corder EH, Basun H, Lannfelt L et al. Attenuation of apolipoprotein E e4 allele gene dose in late age. Lancet 1996; 347: 542.

    Article  PubMed  CAS  Google Scholar 

  141. Namba Y, Tomonaga M, Kawasaki H et al. Apolipoprotein E immunoreactivity in cerebral amyloid deposits and neurofibrillary tangles in Alzheimer’s disease and Kuru plaque amyloid in Creutzfeldt-Jakob disease. Brain Res 1991; 541: 163–166.

    Article  PubMed  CAS  Google Scholar 

  142. Kida E, Golabek AA, Wisniewski T et al. Regional differences in apolipoprotein E immunoreactivity in diffuse plaques in Alzheimer’s disease brain. Neurosci Lett 1994; 167: 73–76.

    Article  PubMed  CAS  Google Scholar 

  143. Wisniewski T, Frangione B. Apolipoprotein E: a pathological chaperone protein in patients with cerebral and systemic amyloid. Neurosci Lett 1992; 135: 235–238.

    Article  PubMed  CAS  Google Scholar 

  144. Davies CA, Mann DMA. Co-localization of apolipoprotein E and amyloid β protein in Down’s syndrome. Ann Neurol 1996; (in press):.

    Google Scholar 

  145. Strittmatter WJ, Weisgraber KH, Huang DY et al. Binding of human apolipoprotein E to synthetic amyloid β peptide: isoform specific effects and implications for lateonset Alzheimer disease. Proc Natl Acad Sci (USA); 90: 8098–8102.

    Google Scholar 

  146. Ma J, Yee A, Brewer B et al. Amyloidassociated proteins of α-1 antichymotrypsin and apolipoprotein E promote assembly of Alzheimer β protein into filaments. Nature 1994; 372: 92–94.

    Article  PubMed  CAS  Google Scholar 

  147. Sanan DA, Weisgraber KH, Russell SJ et al. Apolipoprotein E associates with β amyloid peptide of Alzheimer’s disease to form novel monofibrils. J Clin Invest 1994; 94: 860–869.

    Article  PubMed  CAS  Google Scholar 

  148. LaDu MJ, Falduto MT, Manelli AM et al. Isoform-specific binding of apolipoprotein E to β-amyloid. J Biol Chem 1994; 269: 23403–23406.

    PubMed  CAS  Google Scholar 

  149. LaDu MJ, Pederson TM, Frail DE et al. Purification of apolipoprotein E attenuates isoform-specific binding to β-amyloid. J Biol Chem 1995; 270: 9039–9042.

    Article  PubMed  CAS  Google Scholar 

  150. Benjamin R, Leake A, Edwardson JA et al. Apolipoprotein E genes in Lewy body and Parkinson’s disease. Lancet 1994; 343: 1565.

    Google Scholar 

  151. Pickering-Brown S, Mann DMA, Bourke JP et al. Apolipoprotein E4 and Alzheimer’s disease pathology in Lewy body disease and in other β-amyloid forming diseases. Lancet 1994; 343: 1155.

    Google Scholar 

  152. Galasko D, Saitoh T, Xia Y et al. The apolipoprotein E allele E4 is over-represented in patients with the Lewy body variant of Alzheimer’s disease. Neurology 1994; 44: 1950–1951.

    Article  PubMed  CAS  Google Scholar 

  153. Harrington CR, Louwagie J, Rossau R et al. Influence of apolipoprotein E genotype on senile dementia of the Alzheimer and Lewy body types. Am J Pathol 1994; 145: 1472–1484.

    PubMed  CAS  Google Scholar 

  154. Nicoll JAR, Roberts GW, Graham DI. Apolipoprotein E e4 allele is associated with deposition of amyloid β-protein following head injury. Nature Medicine 1995; 1: 135–137.

    Article  PubMed  CAS  Google Scholar 

  155. Mayeux R, Ottman R, Maestre G et al. Synergistic effects of traumatic head injury and apolipoprotein-epsilon 4 in patients with Alzheimer’s disease. Neurology 1995; 45: 555–557.

    Article  PubMed  CAS  Google Scholar 

  156. Pickering-Brown S, Mann DMA, Owen F et al. Allelic variations in Apolipoprotein E and prion protein genotype related to plaque formation and age of onset in sporadic Creutzfeldt-Jakob disease. Neurosci Lett 1994; 187: 127–129.

    Article  Google Scholar 

  157. Al-Chalabi A, Enayat ZE, Bakker MC et al. Association of apolipoprotein E e4 allele with bulbar-onset motor neuron disease. Lancet 1996; 347: 159–160.

    Article  PubMed  CAS  Google Scholar 

  158. Mui S, Rebeck W, McKenna-Yasek D et al. Apolipoprotein E e4 allele is not associated with earlier age at onset in amyotrophic lateral sclerosis. Ann Neurol 1995; 38: 460–463.

    Article  PubMed  CAS  Google Scholar 

  159. Pickering-Brown SM, Siddons M, Mann DMA et al. Apolipoprotein E allelic frequencies in patients with lobar atrophy. Neurosci Lett 1995; 188: 205–207.

    Article  PubMed  CAS  Google Scholar 

  160. Berr C, Hauw J-J, Delaere P et al. Apolipoprotein E allele E4 is linked to increased deposition of the amyloid β-peptide (A-β) in cases with or without Alzheimer’s disease. Neurosci Lett 1994; 178: 221–224.

    Article  PubMed  CAS  Google Scholar 

  161. Ohm TG, Kirca M, Bohl J et al. Apolipoprotein E polymorphism influences not only cerebral senile plaque load but also Alzheimer-type neurofibrillary tangle formation. Neuroscience 1995; 66: 585–587.

    Article  Google Scholar 

  162. Polvikoski T, Sulkava R, Haltia M et al. Apolipoprotein E, dementia, and cortical deposition of β-amyloid protein. N Engl J Med 1995; 333: 1242–1247.

    Article  PubMed  CAS  Google Scholar 

  163. Hyman B, West HL, Rebeck GW et al. Neuropathological changes in Down’s syndrome, hippocampal formation: effect of age and apolipoprotein E genotype. Arch Neurol 1995; 52: 373–378.

    Article  PubMed  CAS  Google Scholar 

  164. Benjamin R, Leake A, Ince PG et al. Effects of apolipoprotein E genotype on cortical neuropathology in senile dementia of the Lewy body type and Alzheimer’s disease. Neurodegeneration 1995; 4: 443–448.

    Article  PubMed  CAS  Google Scholar 

  165. Gearing M, Mori H, Mirra SS. Aβpeptide length and apolipoprotein E genotype in Alzheimer’s disease. Ann Neurol 1996; 39: 395–399.

    Article  PubMed  CAS  Google Scholar 

  166. Heinonen O, Lehtovirta M, Soininen H et al. Alzheimer pathology of patients carrying apolipoprotein E E4 allele. Neurobiol Aging 1995; 16: 505–513.

    Article  PubMed  CAS  Google Scholar 

  167. Itoh Y, Yamada M. Apolipoprotein E and the neuropathology of dementia. N Engl J Med 1996; 334: 599–600.

    Article  PubMed  CAS  Google Scholar 

  168. Mann DMA, Pickering-Brown SM, Siddons MA et al. The extent of amyloid deposition in brain in patients with Down’s syndrome does not depend upon the apolipoprotein E genotype. Neurosci Lett 1995; 196: 105–108.

    Article  PubMed  CAS  Google Scholar 

  169. Wisniewski HM, Wegiel J, Kotula L. Some neuropathological aspects of Alzheimer’s disease and its relevance to other disciplines. Neuropath Appl Neurobiol 1996; 22: 3–11.

    Article  CAS  Google Scholar 

  170. Soininen H, Kosunen O, Helisalmi S et al. A severe loss of choline acetyltransferase in the frontal cortex of Alzheimer patients carrying apolipoprotein e4 allele. Neurosci Lett 1995; 187: 79–82.

    Article  PubMed  CAS  Google Scholar 

  171. Fukumoto H, Asami-Odaka A, Suzuki N et al. Association of Aβ40 positive senile plaques with microglia cells in the brains of patients with Alzheimer’s disease and non-demented aged individuals. Neurodegeneration 1996; 5: 13–17.

    Article  PubMed  CAS  Google Scholar 

  172. Strittmatter WJ, Weisgraber K, Goedert M et al. Hypothesis: Microtubule instability and paired helical filament formation in the Alzheimer disease brain are related to Apolipoprotein E genotype. Exp Neurol 1994; 125: 163–171.

    Article  PubMed  CAS  Google Scholar 

  173. Nathan BP, Chang K-C, Bellosta S et al. The inhibitory effect of apolipoprotein E4 on neurite outgrowth is associated with microtubule depolymerization. J Biol Chem 1995; 270: 19791–19799.

    Article  PubMed  CAS  Google Scholar 

  174. Huang DY, Weisgraber KH, Goedert M et al. ApoE3 binding to tau tandem repeat I is abolished by tau serine262 phosphorylation. Neurosci Lett 1995; 192: 1–4.

    Article  Google Scholar 

  175. Mahley RW. Apolipoprotein E: cholesterol transport protein with expanding role in cell biology. Science 1988; 240: 622–630.

    Article  PubMed  CAS  Google Scholar 

  176. Diedrich JF, Minnigan H, Carp RI et al. Neuropathological changes in Scrapie and Alzheimer’s disease are associated with increased expression of apolipoprotein E and cathepsin D in astrocytes. J Virol 1991; 65: 4759–4768.

    PubMed  CAS  Google Scholar 

  177. Poirier J, Hess M, May PC et al. Astrocytic apolipoprotein E mRNA and GFAP mRNA in hippocampus after entorhinal cortex lesioning. Mol Brain Res 1991; 11: 97–106.

    Article  PubMed  CAS  Google Scholar 

  178. Pitas RE, Boyles JK, Lee SH et al. Astrocytes synthesize apolipoprotein E and metabolize apolipoprotein E-containing lipoproteins. Biochim Biophys Acta 1987; 917: 148–161.

    Article  PubMed  CAS  Google Scholar 

  179. Skene JHP, Shooter EM. Denervated sheath cells secrete a new protein after nerve injury. Proc Natl Acad Sci (USA) 1983; 80: 4169–4173.

    Article  CAS  Google Scholar 

  180. Muller HW, Ignatius MJ, Hangen DH et al. Expression of specific sheath cell proteins during peripheral nerve growth and regeneration in mammals. J Cell Biol 1986; 102: 393–402.

    Article  PubMed  CAS  Google Scholar 

  181. Han S-H, Hulette C, Saunders AM et al. Apolipoprotein E is present in hippocampal neurons without neurofibrillary tangles in Alzheimer’s disease and in age-matched controls. Exp Neurol 1994; 128: 13–26.

    Article  PubMed  CAS  Google Scholar 

  182. Nathan BP, Bellosta S, Sanan DA et al. Differential effects of apolipoproteins E3 and E4 on neuronal growth in vitro. Science 1994; 264: 850–852.

    Article  PubMed  CAS  Google Scholar 

  183. Bertrand P, Poirier J, Oda T et al. Association of apolipoprotein E genotype with brain levels of apolipoprotein E and apolipoprotein J (clusterin) in Alzheimer’s disease. Mol Brain Res 1995; 33: 174–178.

    Article  PubMed  CAS  Google Scholar 

  184. Masliah E, Mallory M, Alford M et al. Abnormal synaptic regeneration in APP695 transgenic and apoE knockout mice. In: Iqbal K, Mortimer JA, Winblad B et al., eds. Research Advances in Alzheimer’s Disease and Related Disorders. John Wiley and Sons, 1995: 405–414.

    Google Scholar 

  185. Barton AJL, Harrison PJ, Najlerahim A et al. Increased tau messenger RNA in Alzheimer’s disease hippocampus. Am J Pathol 1990; 137: 497–502.

    PubMed  CAS  Google Scholar 

  186. Wasco W, Bupp K, Magendantz M et al. Identification of a mouse brain cDNA that encodes a protein related to the Alzheimer disease-associated amyloid β precursor. Proc Natl Acad Sci (USA) 1992; 89: 10758–10762.

    Article  CAS  Google Scholar 

  187. Wasco W, Gurubhagavatula S, Paradis M d et al. Isolation and characterization of APLP2 encoding a homologue of the Alzheimer’s associated amyloid β protein precursor. Nature Genet 1993; 5: 95–99.

    Article  PubMed  CAS  Google Scholar 

  188. Webster M-T, Groome N, Francis PT et al. A novel protein, amyloid precursor-like protein 2, is present in human brain, cerebrospinal fluid and conditioned media. Biochem J 1995; 310: 95–99.

    PubMed  CAS  Google Scholar 

  189. Sprecher CA, Grant FJ, Grimm G et al. Molecular cloning of the cDNA for a human amyloid precursor protein homolog: evidence for a multigene family. Biochemistry 1993; 32: 4481–4486.

    Article  PubMed  CAS  Google Scholar 

  190. Slunt HH, Thinakaran G, Von Koch C et al. Expression of a ubiquitous, cross-reactive homologue of the mouse β-amyloid precursor protein (APP). J Biol Chem 1994; 269: 2637–2644.

    PubMed  CAS  Google Scholar 

  191. Rempfer R, Crook R, Houlden H et al. Parkinson’s disease, but not Alzheimer’s disease, Lewy body variant associated with mutant alleles at cytochrome P450 gene. Lancet 1994; 344: 815.

    Article  PubMed  CAS  Google Scholar 

  192. Benitez J, Barquero MS, Coria F et al. Oxidative polymorphism of debrisoquine is not related to the risk of Alzheimer’s disease. J Neurol Sci 1993; 117: 8–11.

    Article  PubMed  CAS  Google Scholar 

  193. Saitoh T, Xia Y, Chen X et al. The CYP2D6B mutant allele is overrepresented in the Lewy body variant of Alzheimer’s disease. Ann Neurol 1995; 37: 110–112.

    Article  PubMed  CAS  Google Scholar 

  194. Smith CAD, Gough AC, Leigh PN et al. Debrisoquine hydroxylase gene polymorphism and susceptibility to Parkinson’s disease. Lancet 1992; 339: 1375–1377.

    Article  PubMed  CAS  Google Scholar 

  195. Lin FH, Lin R, Wisniewski HM et al. Detection of point mutations in codon 331 of mitochondrial NADH dehydrogenase subunit 2 in Alzheimer’s brains. Biochem Biophys Res Commun 1991; 182: 238–246.

    Article  Google Scholar 

  196. Jenner P, Schapira AHV, Marsden CD. New insights into the cause of Parkinson’s disease. Neurology 1992; 42: 2241–2250.

    Article  PubMed  CAS  Google Scholar 

  197. Ward CD, Duvoisin RC, Ince SE et al. Parkinson’s disease in 65 pairs of twins and in a set of quadruplets. Neurology 1983; 33: 815–824.

    Article  PubMed  CAS  Google Scholar 

  198. Duvoisin R. Genetics of Parkinson’s disease. Adv Neurol 1986; 45: 307–312.

    Google Scholar 

  199. Perry TL, Wright JM, Berry K et al. Dominantly inherited apathy, central hypoventilation, and Parkinson’s syndrome. Neurology 1990; 40: 1882–1887.

    Article  PubMed  CAS  Google Scholar 

  200. Johnson WG. Genetic susceptibility to Parkinson disease. Neurology 1991; 41: 82–87.

    Article  PubMed  CAS  Google Scholar 

  201. Golbe LI, Iorio G, Bonavita V et al. A large kindred with autosomal dominant Parkinson disease. Ann Neurol 1990; 27: 276–282.

    Article  PubMed  CAS  Google Scholar 

  202. Maraganore DM, Harding AE, Marsden CD. A clinical and genetic study of Parkinson disease. Mov Disord 1991; 6: 205–211.

    Article  PubMed  CAS  Google Scholar 

  203. Tanaka H, Ishikawa A, Ginns EL et al. Linkage analysis of juvenile parkinsonism to tyrosine hydroxylase. Neurology 1991; 41: 719–722.

    Article  PubMed  CAS  Google Scholar 

  204. Ozawa T, Tanaka M, Ino H et al. Distinct clustering of point mutations in mitochondrial DNA among patients with mitochondrial encephalomyopathies and with Parkinson’s disease. Biochem Biophys Res Commun 1991; 176: 938–946.

    Article  PubMed  CAS  Google Scholar 

  205. Ikebe S, Tanaka M, Ohno K et al. Increase of deleted mitochondrial DNA in the striatum in Parkinson’s disease and senescence. Biochem Biophys Res Commun 1988; 170: 1044–1048.

    Article  Google Scholar 

  206. Lestienne P, Nelson I, Riederer P et al. Mitochondrial DNA in postmortem brain from patients with Parkinson’s disease. J Neurochem 1991; 57: 1809–1991.

    Google Scholar 

  207. Lestienne P, Nelson I, Riederer P et al. Normal mitochondrial genome in brain from patients with Parkinson’s disease and complex I defect. J Neurochem 1990; 55: 1810–1812.

    Article  PubMed  CAS  Google Scholar 

  208. Corral-Debrinski M, Horton T, Lott MT et al. Mitochondrial DNA deletions in human brain: regional variability and increase with advanced age. Nature Genet 1992; 2: 324–329.

    Article  PubMed  CAS  Google Scholar 

  209. Mecocci P, MacGarvey U, Kaufman AE et al. Oxidative damage to mitochondrial DNA shows marked age-dependent increases in human brain. Ann Neurol 1993; 34: 609–616.

    Article  PubMed  CAS  Google Scholar 

  210. Filburn CR, Edris W, Tamatani M et al. Mitochondrial electron transport chain activities and DNA deletions in regions of the rat brain. Mech Aging Dev 1996; 87: 35–46.

    Article  PubMed  CAS  Google Scholar 

  211. Roberts GW, Gentleman SM, Lynch A et al. β/A4 amyloid protein deposition in the brain after head 0injury. Lancet 1991; 338: 1422–1423.

    Article  PubMed  CAS  Google Scholar 

  212. Nicoll JAR, Roberts GW, Graham DI. Apolipoprotein E e4 allele is associated with deposition of amyloid β-protein following head injury. Nature Medicine 1995; 1: 135–137.

    Article  PubMed  CAS  Google Scholar 

  213. Graham DI, Gentleman SM, Lynch A et al. Distribution of β-amyloid protein in the brain following severe head injury. Neuropath Appl Neurobiol 1995; 21: 27–34.

    Article  CAS  Google Scholar 

  214. Roberts GW, Allsop D, Bruton C. The occult aftermath of boxing. J Neurol Neurosurg Psychiatry 1990; 53: 373–378.

    Article  PubMed  CAS  Google Scholar 

  215. Hof PR, Bouras C, Buee L et al. Differential distribution of neurofibrillary tangles in the cerebral cortex of dementia pugilistica and Alzheimer’s disease cases. Acta Neuropathol 1992; 85: 23–30.

    Article  PubMed  CAS  Google Scholar 

  216. Geddes JF, Vowles GH, Robinson SFD et al. Neurofibrillary tangles, but not Alzheimer-type pathology, in a young boxer. Neuropath Appl Neurobiol 1996; 22: 12–16.

    Article  CAS  Google Scholar 

  217. Gentleman SM, Nash MJ, Sweeting CJ et al. β-amyloid precursor protein (β-APP) as a marker for axonal injury after head injury. Neurosci Lett 1993; 160: 139–144.

    Google Scholar 

  218. Corsellis JAN, Brierley JB. Observations on the pathology of insidious dementia following head injury. J Ment Sci 1959; 105: 714–720.

    Google Scholar 

  219. Rudelli R, Strom JO, Welch PT et al. Posttraumatic premature Alzheimer’s disease: Neuropathologic findings and pathogenetic considerations. Arch Neurol 1982; 39: 570–575.

    Article  PubMed  CAS  Google Scholar 

  220. Clinton J, Ambler MW, Roberts GW. Post-traumatic Alzheimer’s disease: preponderance of a single plaque type. Neuropath Appl Neurobiol 1991; 17: 69–74.

    Article  CAS  Google Scholar 

  221. McLachlan DR. Inorganic neurotoxins in dementia caused by neurodegeneration. In: Calne DB, ed. Neurodegenerative Diseases. Philadelphia, London, Toronto, Montreal, Sydney, Tokyo: WB Saunders Company, 1994: 241–249.

    Google Scholar 

  222. Crapper DR, Krishnan SS, Quittkat S. Aluminum, neurofibrillary degeneration and Alzheimer’s disease. Brain 1976; 99: 67–80.

    Article  PubMed  CAS  Google Scholar 

  223. Lukiw WJ, Kruck TPA, Krishnan B et al. Nuclear compartmentalization of aluminum in Alzheimer’s disease. Neurobiol Aging 1992; 13: 115–121.

    Article  PubMed  CAS  Google Scholar 

  224. Candy JM, Oakley AE, Klinowski J et al. Aluminosilicates and senile plaque formation in Alzheimer’s disease. Lancet 1986; 1: 354–357.

    Article  PubMed  CAS  Google Scholar 

  225. Nikaido T, Austin JH, Trueb L et al. Studies in aging of the brain. II Microchemical analyses of the nervous system in Alzheimer patients. Arch Neurol 1972; 27: 549–554.

    CAS  Google Scholar 

  226. Masters CL, Simms G, Weinman NA et al. Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci (USA) 1985; 82: 4245–4249.

    Article  CAS  Google Scholar 

  227. Chafi AH, Hauw J-J, Rancurel G et al. Absence of aluminum in Alzheimer’s disease brain tissue: electron microprobe and ion microprobe studies. Neurosci Lett 1991; 123: 61–64.

    Article  PubMed  CAS  Google Scholar 

  228. Jacobs RW, Duong T, Jones RE et al. A reexamination of aluminum in Alzheimer’s disease: analysis by energy dispersive x-ray microprobe and flameless atomic absorption spectrophotometry. Can J Neurol Sci 1989; 16: 498–503.

    PubMed  CAS  Google Scholar 

  229. Landsberg JP, McDonald B, Watt JF. Absence of aluminum in neuritic plaque cores in Alzheimer’s disease. Nature 1992; 360: 65–68.

    Article  PubMed  CAS  Google Scholar 

  230. Perl DP, Brody AR. Alzheimer’s disease: x-ray spectrometric evidence of aluminum accumulation in neurofibrillary tangle-bearing neurons. Science 1980; 208: 297–299.

    Article  PubMed  CAS  Google Scholar 

  231. Good PF, Olanow CW, Perl DP. Neuromelanin-containing neurons of the substantia nigra accumulate iron and aluminum in Parkinson’s disease: A LAMMA study. Brain Res 1992; 593: 343–346.

    Article  PubMed  CAS  Google Scholar 

  232. Lovell MA, Ehmann WD, Markesbery WR. Laser microprobe analysis of brain aluminum in Alzheimer’s disease. Ann Neurol 1993; 33: 36–42.

    Article  PubMed  CAS  Google Scholar 

  233. Martyn CN, Osmond C, Edwardson JA et al. Geographic relation between Alzheimer’s disease and aluminum in drinking water. Lancet 1989; i: 59–62.

    Google Scholar 

  234. Neri LC, Hewitt D. Aluminum, Alzheimer’s disease and drinking water. Lancet 1991; 338: 592–593.

    Article  Google Scholar 

  235. Forbes WF, Hayward LM, Agwani N. Dementia, aluminum, and fluoride. Lancet 1991; 338: 1592–1593.

    Article  PubMed  CAS  Google Scholar 

  236. Vogt T. Water quality and health-Study of a possible relationship between aluminum in drinking water and dementia (Abstract). Oslo, Central Bureau of Statistics of Norway, 1986.

    Google Scholar 

  237. Michel P, Commenges D, Dartigues JF et al. Study of the relationship between aluminum concentrations in drinking water and risk of Alzheimer’s disease. In: Iqbal K, McLaughlan DRC, Winblad B et al., eds. Alzheimer’s Disease Basic Mechanisms, Diagnosis and Therapeutic Strategies. Chichester: J Wiley & Sons, 1991: 387–389.

    Google Scholar 

  238. Wood DJ, Cooper C, Stevens J et al. Bone mass and dementia in hip fracture in patients from areas with different aluminum concentrations in water supplies. Age Aging 1988; 17: 415–419.

    Article  CAS  Google Scholar 

  239. Wettstein A, Aeppli J, Gautschi K et al. Failure to find a relationship between mnestic skills of octogenarians and aluminum in drinking water. Arch Occup Environ Health 1991; 63: 97–103.

    Article  CAS  Google Scholar 

  240. Doll R. Alzheimer’s disease and environmental aluminum. Age Aging 1993; 22: 138–153.

    Article  CAS  Google Scholar 

  241. Klazo I, Wisniewski HM, Streicher E. Experimental production of neurofibrillary degeneration: I. Light microscopic observations. J Neuropathol Exp Neurol 1965; 24: 187–199.

    Article  Google Scholar 

  242. Terry RD, Pena C. Experimental production of neurofibrillary degeneration: 2. Electron microscopy, phosphatase histochemistry and electron probe analysis. J Neuropathol Exp Neurol 1965; 24: 200–210.

    Article  PubMed  CAS  Google Scholar 

  243. Guy S, Jones D, Mann DMA et al. Neuroblastoma cells treated with aluminum-EDTA express an epitope associated with Alzheimer’s disease neurofibrillary tangles. Neurosci Lett 1991; 121: 166–168.

    Article  PubMed  CAS  Google Scholar 

  244. Mesco ER, Kachen C, Timiras PS. Effects of aluminum on tau proteins in human neuroblastoma cells. Molec Chem Neuropathol 1991; 14: 199–212.

    Article  CAS  Google Scholar 

  245. Candy JM, McArthur FK, Oakley AE et al. Aluminum accumulation in relation to senile plaque and neurofibrillary tangle formation in the brains of patients with renal failure. J Neurol Sci 1992; 107: 210–218.

    Article  PubMed  CAS  Google Scholar 

  246. Alfrey AC, LeGendre GR, Kaehny WD. The dialysis encephalopathy syndrome: possible aluminum intoxication. N Engl J Med 1976; 294: 184–188.

    Article  PubMed  CAS  Google Scholar 

  247. Burks JS, Alfrey AC, Huddlestone J et al. A fatal encephalopathy in chronic haemodialysis patients. Lancet 1976; i: 764–768.

    Article  Google Scholar 

  248. Harrington CR, Wischik CM, McArthur FK et al. Alzheimer’s disease-like changes in tau protein processing: association with aluminum accumulation in brains of renal dialysis patients. Lancet 1994; 343: 993–997.

    Article  PubMed  CAS  Google Scholar 

  249. Stroop WG, Rock D, Fraser NW. Localization of herpes simplex virus in the trigeminal and olfactory systems in the mouse central nervous system during acute and latent infections by in situ hybridization. Lab Invest 1984; 51: 27–38.

    PubMed  CAS  Google Scholar 

  250. Libikova H, Pogady J, Wiedermann V et al. Search for herpetic antibodies in the cerebrospinal fluid in senile dementia and mental retardation. Acta Virologica 1975; 19: 494–495.

    Google Scholar 

  251. Mann DMA, Yates PO, Davies JS et al. Viruses and Alzheimer’s disease. J Neurol Neurosurg Psychiatry 1982; 45: 759–760.

    Article  Google Scholar 

  252. Esiri MM. Viruses and Alzheimer’s disease. J Neurol Neurosurg Psychiatry 1982; 45: 759.

    Article  PubMed  CAS  Google Scholar 

  253. Pogo BGT, Casals J, Elizan TS. A study of viral genomes and antigens in brains of patients with Alzheimer’s disease. Brain 1987; 110: 907–915.

    Article  PubMed  Google Scholar 

  254. Sequiera LW, Jennings LC, Carrasco LH et al. Detection of herpes simplex viral genome in brain tissue. Lancet 1979; ii: 608–612.

    Google Scholar 

  255. Fraser NW, Lawrence WC, Wroblewska Z et al. Herpes simplex virus type 1 DNA in human brain tissue. Proc Natl Acad Sci (USA) 1981; 78: 6461–6465.

    Article  CAS  Google Scholar 

  256. Taylor GR, Crow TJ, Markakis DA et al. Herpes simplex virus and Alzheimer’s disease: a seach for virus DNA by spot hybridisation. J Neurol Neurosurg Psychiatry 1984; 47: 1061–1065.

    Article  PubMed  CAS  Google Scholar 

  257. Efstathiou S, Minson AC, Field HJ et al. Detection of herpes simplex virus-specific DNA sequences in latently infected mice and in humans. J Virol 1986; 57: 446–455.

    PubMed  CAS  Google Scholar 

  258. Croen KD, Ostrove JM, Dragovic LJ et al. Latent herpes simplex virus in human trigeminal ganglia. Detection of an immediate early gene “anti-sense” transcript by in situ hybridization. N Engl J Med 1987; 317: 1427–1432.

    Article  PubMed  CAS  Google Scholar 

  259. Gordon YJ, Johnson B, Romanowski E et al. RNA complementary to herpes simplex virus type 1 ICPO gene demonstrated in neurons of human trigeminal ganglia. J Virol 1988; 62: 1832–1835.

    PubMed  CAS  Google Scholar 

  260. Steiner I, Spivack JG, O’Boyle DR et al. Latent herpes simplex virus type 1 transcription in human trigeminal ganglia. J Virol 1988; 62: 3493–3496.

    PubMed  CAS  Google Scholar 

  261. Middleton PJ, Petric M, Kozak M et al. Herpes simplex viral genome and senile and presenile dementias of Alzheimer and Pick. Lancet 1980; i: 1038.

    Google Scholar 

  262. Dealty AM, Haase AT, Fewster PH et al. Human herpes virus infections and Alzheimer’s disease. Neuropath Appl Neurobiol 1990; 16: 213–223.

    Article  Google Scholar 

  263. Wisniewski KE, Jervis GA, Moretz RC et al. Alzheimer neurofibrillary tangles in diseases other than senile and presenile dementia. Ann Neurol 1979; 7: 462–465.

    Google Scholar 

  264. Tabaton M, Mandybur TI, Perry G et al. The widespread alteration of neurites in Alzheimer’s disease may be unrelated to amyloid deposition. Ann Neurol 1989; 26: 771–778.

    Article  PubMed  CAS  Google Scholar 

  265. Geddes JF, Hughes AJ, Lees AJ et al. Pathological overlap in cases of parkinsonism associated with neurofibrillary tangles. A study of postencephalic parkinsonism and comparison with progressive supranuclear palsy and Guamanian parkinsonismdementia complex. Brain 1993; 116: 281–302.

    Article  PubMed  Google Scholar 

  266. Jamieson GA, Maitland NJ, Wilcock GK et al. Herpes simplex virus type 1 DNA is present in specific regions of brain from aged people with and without senile dementia of the Alzheimer type. J Pathol 1992; 167: 365–368.

    Article  PubMed  CAS  Google Scholar 

  267. Bertrand P, Guillaume D, Hellauer K et al. Distribution of herpes simplex virus type 1 DNA in selected areas of normal and Alzheimer’s disease brains: A PCR study. Neurodegeneration 1993; 2: 201–208.

    Google Scholar 

  268. Marsden CD. Parkinson’s disease in twins. J Neurol Neurosurg Psychiatry 1987; 50: 105–106.

    Article  PubMed  CAS  Google Scholar 

  269. Langston JW, Ballard P, Tetrud JW et al. Chronic parkinsonism in humans due to a product of meperidine analogue synthesis. Science 1983; 219: 979–980.

    Article  PubMed  CAS  Google Scholar 

  270. Burns RS, Chiueh CC, Markey SP et al. A primate model of parkinsonism: selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Proc Natl Acad Sci (USA) 1983; 80: 4546–4550.

    Article  CAS  Google Scholar 

  271. Davis GC, Williams AC, Markey SP et al. Chronic parkinsonism secondary to intravenous injection of meperidine analgue. Psychiat Res 1979; 1: 249–254.

    Article  CAS  Google Scholar 

  272. Calne DB, Langston JW. Aetiology of Parkinson’s disease. Lancet 1983; ii: 1457–1459.

    Article  Google Scholar 

  273. Spencer PS, Nunn PB, Hugon J et al. Guam amyotrophic lateral sclerosis-parkinsonism-dementia linked to a plant excitant neurotoxin. Science 1987; 237: 517–522.

    Article  PubMed  CAS  Google Scholar 

  274. Hyman C, Hofer M, Barde YA et al. BDNF is a neurotrophic factor for dopaminergic neurons of the substantia nigra. Nature 1991; 350: 230–233.

    Article  PubMed  CAS  Google Scholar 

  275. Ambani LM, Van Woert MH, Murphy S. Brain peroxidase and catalase in Parkinson’s disease. Arch Neurol 1975; 32: 114–118.

    Article  PubMed  CAS  Google Scholar 

  276. Ballard PA, Tetrud JW, Langston JW. Permanent human parkinsonism due to l-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP): Seven cases. Neurology 1985; 35: 949–956.

    Article  PubMed  CAS  Google Scholar 

  277. Salach JI, Singer TP, Castagnoli N et al. Oxidation of the neurotoxic amine MPTP by monoamine oxidases A and B and suicide inactivtion of the enzymes by MPTP. Biochem Biophys Res Commun 1984; 125: 831–835.

    Article  PubMed  CAS  Google Scholar 

  278. Javitch JA, D’Amato RJ, Strittmatter SM et al. Parkinsonism-inducing neurotoxin, N-methy 1-4-phenyl-1,2,3,6-tetrahydropyri-dine: uptake of the metabolite N-methyl-4-phenylpyridinium by dopamine neurons explains selective toxicity. Proc Natl Acad Sci (USA) 1985; 82: 2173–2177.

    CAS  Google Scholar 

  279. Ramsay RR, Dadger J, Trevor AJ et al. Energy-driven uptake of MPP+ by brain mitochondria mediates the neurotoxicity of MPTP. Life Sci 1986; 39: 581–588.

    Article  PubMed  CAS  Google Scholar 

  280. Nicklas WJ, Vyas I, Heikkila RE. Inhibition of NADH-linked oxidation in brain mitochondria by l-methyl-4-phenylpyridinium, a metabolite of l-methyl-4-phenyl-l,2,3,6-tetrahydropyridine. Life Sci 1985; 36: 2503–2508.

    CAS  Google Scholar 

  281. Nicklas WJ, Youngster SK, Kindt MV et al. MPTP, MPP+ and mitochondrial function. Life Sci 1987; 40: 721–729.

    Article  PubMed  CAS  Google Scholar 

  282. Cleeter MJW, Cooper JM, Schapira AHV. Irreversible inhibition of mitochondrial complex I by l-methyl-4-phenylpyridiniumevidence for free radical involvement. J Neurochem 1992; 58: 786–789.

    Article  PubMed  CAS  Google Scholar 

  283. Mizuno Y, Saitoh T, Sone N. Inhibition of mitochondrial α-ketoglutarate dehydrogenase by 1-methyl-4-phenylpyridinium ion. Biochem Biophys Res Commun 1987; 143: 971–976.

    Article  PubMed  CAS  Google Scholar 

  284. Forno LS, Langston JW, DeLanney LE et al. Locus ceruleus lesions and eosinophilic inclusions in MPTP-treated monkeys. Ann Neurol 1986; 20: 449–455.

    Article  PubMed  CAS  Google Scholar 

  285. Heikkila RE, Cohen G. Inhibition of biogenic amine uptake by hydrogen peroxide: A mechanism for toxic effects of 6-hydroxydopamine. Science 1971; 172: 1257–1258.

    Article  PubMed  CAS  Google Scholar 

  286. Graham DG, Tiffany SM, Bell WR. Auto-oxidation versus covalent binding of quinones as the mechanism of toxicity of dopamine, 6-hydroxydopamine and related compounds towards C1300 neuroblastoma cells in vitro. Molec Pharmacol 1978; 14: 644–653.

    CAS  Google Scholar 

  287. Archibald FS, Tyree C. Manganese poisoning and the attack of trivalent manganese upon catecholamines. Arch Biochem Biophys 1987; 256: 638–650.

    Article  PubMed  CAS  Google Scholar 

  288. Greenfield JG, Bosanquet FD. The brain stem lesions in Parkinsonism. J Neurol Neurosurg Psychiatry 1953; 16: 213–226.

    Article  PubMed  CAS  Google Scholar 

  289. Forno LS, Langston JW. Lewy bodies and aging: Relation to Alzheimer’s and Parkinson’s diseases. Neurodegeneration 1993; 2: 19–24.

    Google Scholar 

  290. Gaspar P, Gray F. Dementia in idiopathic Parkinson’s disease: A neuropathological study of 32 cases. Acta Neuropathol 1984; 64: 43–52.

    Article  PubMed  CAS  Google Scholar 

  291. Mann DMA, Yates PO, Hawkes J. The pathology of the human locus caeruleus. Clin Neuropathol 1983; 2: 1–7.

    PubMed  CAS  Google Scholar 

  292. Schapira AHV, Cooper JM, Dexter D. Mitochondrial complex I deficiency in Parkinson’s disease. Lancet 1989; i: 1269.

    Google Scholar 

  293. Schapira AHV, Cooper JM, Dexter D et al. Mitochondrial complex 1 deficiency in Parkinson’s disease. J. Neurochem 1990; 54: 823–827.

    Article  PubMed  CAS  Google Scholar 

  294. Schapira AHV, Mann VM, Cooper JM et al. Anatomic and disease specificity of NADH CoQl reductase (complex I) deficiency in Parkinson’s disease. J Neurochem 1990; 55: 2142–2145.

    Article  PubMed  CAS  Google Scholar 

  295. Mizuno Y, Ohta S, Tanaka M. Deficiencies in complex I subunits of the respiratory chain in Parkinson’s disease. Biochem Biophys Res Commun 1989; 163: 1450–1455.

    Article  PubMed  CAS  Google Scholar 

  296. Parker WD, Boyson SJ, Parks JK. Abnormalities of the electron transport chain in idiopathic Parkinson’s disease. Ann Neurol 1989; 26: 719–723.

    Article  PubMed  Google Scholar 

  297. Mizuno Y, Matuda S, Yoshino H et al. An immunohistochemical study on α-ketoglutarate dehydrogenase complex in Parkinson’s disease. Ann Neurol 1994; 35: 204–210.

    Article  PubMed  CAS  Google Scholar 

  298. Hattori N, Tanaka M, Ozawa T et al. Immunohistochemical studies on complexes I, II, III and IV of mitochondria in Parkinson’s disease. Ann Neurol 1991; 30: 563–571.

    Article  PubMed  CAS  Google Scholar 

  299. McNaught KStP, Thull U, Carrupt P-A et al. Nigral cell loss produced by infusion of isoquinoline derivatives structurally related to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Neurodegeneration 1996; 5: 265–270.

    Article  PubMed  CAS  Google Scholar 

  300. Yoshida M, Niwa T, Nagatsu T. Parkinsonism in monkeys produced by chronic administration of an endogenous substance of the brain, tetrahydroisoquinoline: the behavioural and biochemical changes. Neurosci Lett 1990; 119: 109–113.

    Article  PubMed  CAS  Google Scholar 

  301. Yoshida M, Ogawa M, Suzuki K et al. Parkinsonism produced by tetrahydroisoquinoline (TIQ) or the analogues. In: Narabayashi H, Yanagisawa Y, Mizuno Y, eds. Advances in Neurology. New York: Raven Press Limited, 1993: 207–211.

    Google Scholar 

  302. McNaught KStP, Altomare C, Cellamare S et al. Inhibition of α-ketoglutarate dehydrogenase by isoquinoline derivatives structurally related to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). NeuroReport 1995; 6: 1105–1108.

    Article  PubMed  CAS  Google Scholar 

  303. Nishi K, Mochizuki H, Furukawa Y et al. Neurotoxic effects of 1-methyl-4-phenylpyridinium (MPP + ) and tetrahydroisoquinoline derivatives on dopaminergic neurons in ventral mesencephalic striatal co-culture. Neurodegeneration 1994; 3: 33–42.

    Google Scholar 

  304. Saporito M, Heikkila RE, Youngster SK et al. Dopaminergic neurotoxicity of 1-methyl-4-phenylpyridinium analogs in cultured neurons: relationship to the dopamine uptake system and inhibition of mitochondrial respiration. J Pharmac Exp Ther 1992; 260: 1400–1409.

    CAS  Google Scholar 

  305. Maruyama W, Nakahara D, Ota M et al. N-methylation of dopamine-derived 6,7-dihydroxy-l,2,3,4-tetrahydroisoquinoline, (R)-salsolinol, in rat brains: In vivo microdialysis study. J Neurochem 1992; 59: 395–400.

    Article  PubMed  CAS  Google Scholar 

  306. McNaught KStP, Thull U, Carrupt PA et al. Inhibition of complex I by isoquinoline derivatives structurally related to 1-methyl-4-phenyl-l,2,3,6-tetrahydropyridine (MPTP). Biochem Pharmacol 1995; 50: 1903–1911.

    Article  PubMed  CAS  Google Scholar 

  307. McNaught KStP, Thull U, Carrupt PA et al. Effects of isoquinoline derivatives structurally related to l-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) on mitochondrial respiration. Biochem Pharmacol 1996; 51: 1503–1511.

    Article  PubMed  CAS  Google Scholar 

  308. Maruyama W, Dostert W, Naoi M. Dopamine-derived 1-methyl-6,7-dihydroxyiso-quinoline as hydroxy radical promoters and scavengers: In vivo and in vitro studies. J Neurochem 1995; 64: 2635–2643.

    Article  PubMed  CAS  Google Scholar 

  309. Fahn S, Cohen G. The oxidant stress hypothesis in Parkinson’s disease: evidence supporting it. Ann Neurol 1992; 32: 804–812.

    Article  PubMed  CAS  Google Scholar 

  310. Kish SJ, Morito C, Hornykiewicz O. Glutathione peroxidase activity in Parkinson’s disease. Neurosci Lett 1985; 58: 343–346.

    Article  PubMed  CAS  Google Scholar 

  311. Perry TL, Godin DV, Hansen S. Parkinson’s disease: a disorder due to nigral glutathione deficiency? Neurosci Lett 1982; 33: 305–310.

    Article  PubMed  CAS  Google Scholar 

  312. Perry TL, Yong VW. Idiopathic Parkinson’s disease, progressive supranuclear palsy and gluathione metabolism in the substantia nigra of patients. Neurosci Lett 1986; 67: 269–274.

    Article  PubMed  CAS  Google Scholar 

  313. Riederer P, Sofic E, Rausch WD et al. Transitional metals, ferritin, glutathione, ascorbic acid in parkinsonian brains. J Neurochem 1989; 52: 515–526.

    Article  PubMed  CAS  Google Scholar 

  314. Sofic E, Lange KW, Jellinger K et al. Reduced and oxidized glutathione in the substantia nigra of patients with Parkinson’s disease. Neurosci Lett 1992; 142: 128–130.

    Article  PubMed  CAS  Google Scholar 

  315. Sian J, Dexter DT, Lees AJ et al. Alterations in glutathione levels in Parkinson’s disease and other neurodegenerative disorders affecting basal ganglia. Ann Neurol 1994; 36: 348–355.

    Article  PubMed  CAS  Google Scholar 

  316. Dexter DT, Carter CJ, Agid F et al. Lipid peroxidation as a cause of nigral cell death in Parkinson’s disease. Lancet 1986; ii: 639–640.

    Article  Google Scholar 

  317. Dexter DT, Carter CJ, Wells FR et al. Basal lipid peroxidation is increased in Parkinson’s disease. J Neurochem 1989; 52: 381–389.

    Article  PubMed  CAS  Google Scholar 

  318. Dexter DT, Holley AE, Flitter WD et al. Increased levels of lipid hydroperoxides in the parkinsonian substantia nigra: An HPLC and ESR study. Mov Disord 1994; 9: 92–97.

    Article  PubMed  CAS  Google Scholar 

  319. Marttila RJ, Lorentz H, Rinne UK. Oxygen toxicity protecting enzymes in Parkinson’s disease. Increase of Superoxide dismutase-like activities in the substantia nigra and basal nucleus. J Neurol Sci 1988; 86: 321–331.

    Article  PubMed  CAS  Google Scholar 

  320. Saggu H, Cooksey J, Dexter D et al. A selective increase in particulate Superoxide dismutase activity in parkinsonian substantia nigra. J Neurochem 1989; 53: 692–697.

    Article  PubMed  CAS  Google Scholar 

  321. Ceballos I, Lafon M, Javoy-Agid F et al. Superoxide dismutase and Parkinson’s disease. Lancet 1990; 335: 1035–1036.

    Article  PubMed  CAS  Google Scholar 

  322. Sanchez-Ramos JR, Overvik E, Ames BN. A marker of oxyradical-mediated DNA damage (8-hydroxy-2’-deoxyguanosine) is increased in the nigro-striatum in Parkinson’s disease brain. Neurodegeneration 1994; 3: 197–204.

    Google Scholar 

  323. Dexter DT, Wells FR, Agid F et al. Increased nigral iron content in post mortem Parkinsonian brain. Lancet 1987; ii: 1219–1220.

    Google Scholar 

  324. Dexter DT, Carayon A, Javoy-Agid F et al. Alterations in the levels of iron, ferritin and other trace metals in Parkinson’s disease and other neurodegenerative diseases affecting the basal ganglia. Brain 1991; 114: 1953–1975.

    Article  PubMed  Google Scholar 

  325. Sofic E, Paulus W, Jellinger K et al. Selective increase of iron in substantia nigra zona compacta of Parkinsonian brains. J Neurochem 1991; 56: 978–982.

    Article  PubMed  CAS  Google Scholar 

  326. Morris CM, Edwardson JA. Iron histochemistry of the substantia nigra in Parkinson’s disease. Neurodegeneration 1994; 3: 277–282.

    PubMed  CAS  Google Scholar 

  327. Olanow CW. An introduction to the free radical hypothesis in Parkinson’s disease. Ann Neurol 1992; 32: 52–59.

    Article  Google Scholar 

  328. Perl DP, Good PF. Comparative techniques for determining cellular iron distribution in brain tissues. Ann Neurol 1992; 32: 576–581.

    Article  Google Scholar 

  329. Jellinger K, Kienzl E, Paulus W et al. Presence of iron in melanized dopamine neurons in Parkinson’s disease. J Neurochem 1992; 59: 1168–1171.

    Article  PubMed  CAS  Google Scholar 

  330. Zecca L, Pietra R, Goj C et al. Iron and other metals in neuromelanin, substantia nigra and putamen of human brain. J Neurochem 1994; 62: 1097–1101.

    Article  PubMed  CAS  Google Scholar 

  331. Enochs WS, Nilges MJ, Swartz HM. Purified human neuromelanin, synthetic dopamine melanin as a potential model pigment, and the normal human substantia nigra: Characterization by electron paramagnetic resonance spectroscopy. J Neurochem 1992; 61: 68–79.

    Article  Google Scholar 

  332. Hirsch EC, Brandel JP, Galle P et al. Iron and aluminum increase in the substantia nigra of patients with Parkinson’s disease: An X-ray microanalysis. J Neurochem 1991; 56: 446–451.

    Article  PubMed  CAS  Google Scholar 

  333. Jellinger K, Paulus W, Grundke-Iqbal U et al. Brain iron and ferritin in Parkinson’s and Alzheimer’s diseases. J Neurol Transm. Park Dis Dement Sec 1990; 2: 327–340.

    Article  CAS  Google Scholar 

  334. McGeer PL, Itagaki S, Akiyama H et al. Rate of cell death in Parkinsonism indicates active neuropathological process. Ann Neurol 1988; 24: 574–576.

    Article  PubMed  CAS  Google Scholar 

  335. Graham DG. On the origin and significance of neuromelanin. Arch Path Lab Med 1979; 103: 359–362.

    Google Scholar 

  336. Fearnley JM, Lees AJ. Aging and Parkinson’s disease: Substantia nigra regional selectivity. Brain 1991; 114: 2283–2301.

    Article  PubMed  Google Scholar 

  337. Arendt T, Bigl V, Arendt A et al. Loss of neurones in the nucleus basalis of Meynert in Alzheimer’s disease, paralysis agitans and Korsakoffs disease. Acta Neuropathol 1983; 61: 101–108.

    Article  PubMed  CAS  Google Scholar 

  338. Rogers JD, Brogan D, Mirra SS. The nucleus basalis of Meynert in neurological disease: A quantitative morphological study. Ann Neurol 1985; 17: 163–170.

    Article  PubMed  CAS  Google Scholar 

  339. Hoehn MD, Yahr MM. Parkinsonism: Onset, progression and mortality. Neurology 1967; 17: 427–442.

    Article  PubMed  CAS  Google Scholar 

  340. Duvoisin RC, Yahr MD. Encephalitis and parkinsonism. Arch Neurol 1965; 12: 227–239

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mann, D.M.A. (1997). Etiological Considerations. In: Sense and Senility: The Neuropathology of the Aged Human Brain. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6001-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6001-2_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7749-8

  • Online ISBN: 978-1-4615-6001-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics