Skip to main content

Abstract

From what has been sald so far it should be apparent that it is not really possible to draw clear cut qualitative distinctions, either in clinical or pathological terms, between the effects of so-called normal aging and those of the common neurodegenerative diseases of later life (i.e. AD, PD). Pathological diagnoses of AD and PD are made on the basis of the amount, rather than the type, and distribution of damage imposed upon the brain. In clinical terms this degree of damage may be represented by a subthreshold scoring on rating systems designed to test powers of memory or reasoning, or motor function. Such observations imply that aging and neurodegeneration might exist on a sliding scale of change the one inevitably leading, with time, into the other, with a certain and perhaps rather arbitrary “cut off point” separating the two.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hubbard BM, Anderson JM. Age, senile dementia and ventricular enlargement. J Neurol Neurosurg Psychiatry 1981; 14: 631–635.

    Article  Google Scholar 

  2. George AE, de Leon MJ, Ferris SH et al. Parenchymal CT correlates of senile dementia (Alzheimer’s disease): Loss of gray-white matter discriminability. Am J Neuroradiol 1981; 2: 205–213.

    PubMed  CAS  Google Scholar 

  3. Huckman MS, Fox J, Topel J. The validity of criteria for the evaluation of cerebral atrophy by computed tomography. Radiology 1975; 116: 85–92.

    PubMed  CAS  Google Scholar 

  4. Koller WC, Glatt SL, Fox JH et al. Cerebellar atrophy: relationship to aging and cerebral atrophy. Neurology 1981; 31: 1486–1488.

    Article  PubMed  CAS  Google Scholar 

  5. Drayer BP, Heyman A, Wilkinson W et al. Early onset Alzheimer’s disease: An analysis of CT findings. Ann Neurol 1985; 17: 407–410.

    Article  PubMed  CAS  Google Scholar 

  6. Gado M, Hughs CP, Danziger W et al. Volumetric measurements of the cerebrospinal fluid spaces in demented subjects and controls. Radiology 1982; 144: 535–538.

    PubMed  CAS  Google Scholar 

  7. LeMay M. Radiologic changes of the aging brain and skull. Am J Radiol 1984; 143: 383–389.

    CAS  Google Scholar 

  8. Schwartz M, Creasey H, Grady CL et al. Computed tomographic analysis of brain morphometrics in 30 healthy men, aged 21 to 81 years. Ann Neurol 1985; 17: 146–157.

    Article  PubMed  CAS  Google Scholar 

  9. Pfefferbaum A, Zatz LM, Jernigan TL. Computer-interactive method for quantifying cerebrospinal fluid and tissue in brain CT scans: Effects of aging. J Comput Assist Tomogr 1986; 10: 571–578.

    Article  PubMed  CAS  Google Scholar 

  10. Drayer BP. Imaging of the aging brain. Radiology 1988; 166: 785–796.

    PubMed  CAS  Google Scholar 

  11. Creasey H, Rapoport SI. The aging human brain. Ann Neurol 1985; 17: 2–10.

    Article  PubMed  CAS  Google Scholar 

  12. Jobst KA, Smith AD, Szatmari M et al. Detection in life of confirmed Alzheimer’s disease using a simple measurement of medial temporal lobe atrophy by computed tomography. Lancet 1992; 340: 1179–1183.

    Google Scholar 

  13. Jobst KA, Smith AD, Szatmari M et al. Rapidly progressing atrophy of medial temporal lobe in Alzheimer’s disease. Lancet 1994; 343: 829–830.

    Article  PubMed  CAS  Google Scholar 

  14. Pasquier F, Ball L, Lebert F et al. Determination of medial temporal lobe atrophy in early Alzheimer’s disease with computed tomography. Lancet 1994; 343: 861–862.

    Article  PubMed  CAS  Google Scholar 

  15. Tanna NK, Kohn MI, Horwich DN et al. Analysis of brain and cerebrospinal fluid volumes with MR imaging: Impact on PET data correction for atrophy. Radiology 1991; 178: 123–130.

    PubMed  CAS  Google Scholar 

  16. Seab JP, Jagust WJ, Wong STS et al. Quantitative NMR measurements of hippocampal atrophy in Alzheimer’s disease. Magn Reson Med 1988; 8: 200–208.

    Article  PubMed  CAS  Google Scholar 

  17. Dahlbeck SW, McCluney KW, Yeakley JW et al. The interuncal distance: A new MR measurement for the hippocampal atrophy of Alzheimer disease. Am J Neuroradiol 1991; 12: 931–932.

    PubMed  CAS  Google Scholar 

  18. Kesslak JP, Nalcioglu O, Cotman CW. Quantification of magnetic resonance scans for hippocampal and parahippocampal atrophy in Alzheimer’s disease. Neurology 1991; 41: 51–54.

    Article  PubMed  CAS  Google Scholar 

  19. Jack CR, Petersen RC, O’Brien PC et al. MR-based hippocampal volumetry in the diagnosis of Alzheimer’s disease. Neurology 1992; 42: 183–188.

    Article  PubMed  Google Scholar 

  20. Erkinjuntti T, Lee DH, Gao F et al. Temporal lobe atrophy on magnetic resonance imaging in the diagnosis of early Alzheimer’s disease. Arch Neurol 1993; 50: 305–310.

    Article  PubMed  CAS  Google Scholar 

  21. Laakso MP, Soininen H, Helkala E-L et al. Volumes of hippocampus and amygdala in the magnetic resonance imaging based diagnosis of early Alzheimer’s disease. In: Iqbal K, Mortimer JA, Winblad B et al., eds. Research Advances in Alzheimer’s Disease and Related Disorders, ed.: John Wiley & Sons Ltd, 1995: 181–188.

    Google Scholar 

  22. Jernigan TL, Salmon DP, Butters N et al. Cerebral structures on MRI: Part II. Specific changes in Alzheimer’s and Huntington’s diseases. Biol Psychiat 1991; 29: 68–81.

    Article  PubMed  CAS  Google Scholar 

  23. Rusinek H, de Leon MJ, George AE et al. Alzheimer disease: Measuring loss of cerebral gray matter with MR imaging. Radiology 1991; 178: 109–114.

    PubMed  CAS  Google Scholar 

  24. Fazekas F, Chawluk JB, Alavi A et al. MR signal abnormalities at 1.5 T in Alzheimer’s dementia and normal aging. Am J Neuroradiol 1987; 8: 421–426.

    Google Scholar 

  25. Harrell LE, Duvall E, Folks DG et al. The relationship of high-intensity signals on magnetic resonance images to cognitive and psychiatric state in Alzheimer’s disease. Arch Neurol 1991; 48: 1136–1140.

    Article  PubMed  CAS  Google Scholar 

  26. Kumar A, Yousem D, Souder E et al. High-intensity signals in Alzheimer’s disease without cerebrovascular risk factors: A magnetic resonance imaging evaluation. Am J Psychiatry 1992; 149: 248–250.

    PubMed  CAS  Google Scholar 

  27. Bradley WG, Waluch V, Brant-Zawadzki M et al. Patchy, periventricular white matter lesions in the elderly: A common observation during NMR imaging. Noninvas Med Imaging 1984; 1: 35–41.

    Google Scholar 

  28. Brant-Zawadski M, Fein G, Van Dyke C et al. MR imaging of the aging brain: patchy white-matter lesions and dementia. Am J Neuroradiol 1985; 6: 675–682.

    Google Scholar 

  29. George AE, de Leon MJ, Kalnin A et al. Leukoencephalopathy in normal and pathologic aging: II MRI of brain lucencies. Am J Neuroradiol 1986; 7: 561–570.

    PubMed  CAS  Google Scholar 

  30. Rezek DL, Morris JC, Fulling KH et al. Periventricular white matter lucencies in senile dementia of the Alzheimer type and in normal aging. Neurology 1987; 37: 1365–1368.

    Article  PubMed  CAS  Google Scholar 

  31. Leys D, Soetaert G, Petit H et al. Periventricular and white matter magnetic resonance imaging hyperintensities do not differ between Alzheimer’s disease and normal aging. Arch Neurol 1990; 47: 524–527.

    Article  PubMed  CAS  Google Scholar 

  32. Ferris SH, De Leon MJ, Wolf AP et al. Positron emission tomography in dementia. Adv Neurol 1983; 38: 123–129.

    PubMed  CAS  Google Scholar 

  33. Foster NL, Chase TN, Fedio P et al. Alzheimer’s disease: Focal cortical changes shown by positron emission tomography. Neurology 1983; 33: 961–965.

    Article  PubMed  CAS  Google Scholar 

  34. Friedland RP, Budinger TF, Koss E et al. Alzheimer’s disease: anterior-posterior and lateral hemispheric alterations in cortical glucose utilization. Neurosci Lett 1983; 53: 235–240.

    Article  Google Scholar 

  35. De Leon MJ, Ferris SH, George AE et al. Positron emission tomographic studies of aging and Alzheimer disease. Am J Neuroradiol 1983; 4: 568–571.

    PubMed  Google Scholar 

  36. Grady CL, Haxby JV, Schlageter NL et al. Stability of metabolic and neuropsychological asymmetries in dementia of the Alzheimer type. Neurology 1986; 36: 1390–1392.

    Article  PubMed  CAS  Google Scholar 

  37. Grady CL, Haxby JV, Horwitz B et al. Neuropsychological and cerebral metabolic function in early vs late onset dementia of the Alzheimer type. Neuropsychologia 1987; 25: 807–816.

    Article  PubMed  CAS  Google Scholar 

  38. Haxby JV, Grady CL, Koss E et al. Longitudinal study of cerebral metabolic asymmetries and associated neuropsychological patterns in early dementia of the Alzheimer type. Arch Neurol 1990; 47: 753–760.

    Article  PubMed  CAS  Google Scholar 

  39. Azari NP, Rapoport SI, Grady CL et al. Patterns of interregional correlations of cerebral glucose metabolic rates in patients with dementia of the Alzheimer type. Neurodegeneration 1992; 1: 101–111.

    Google Scholar 

  40. Chawluk JB, Alavi A, Dann R et al. Positron emission tomography in aging and dementia: Effect of cerebral atrophy. J Nucl Med 1987; 28: 431–437.

    PubMed  CAS  Google Scholar 

  41. DeCarli C, Atack JR, Ball MJ et al. Post-mortem regional neurofibrillary tangle densities but not senile plaque densities are related to regional cerebral metabolic rates for glucose during life in Alzheimer’s disease patients. Neurodegeneration 1992; 1: 113–121.

    Google Scholar 

  42. Haxby JV, Duara R, Grady CL et al. Relations between neuropsychological and cerebral metabolic asymmetries in early Alzheimer’s disease. J Cereb Blood Flow Metab 1985; 5: 193–200.

    Article  PubMed  CAS  Google Scholar 

  43. Grady CL, Haxby JV, Horwitz B et al. A longitudinal study of the early neuro-psychological and cerebral changes in dementia of the Alzheimer type. J Clin Exp Neuropsychol 1988; 10: 576–596.

    Article  PubMed  CAS  Google Scholar 

  44. Kumar A, Schapiro MB, Haxby JV et al. Cerebral metabolic and cognitive studies in dementia with frontal lobe behavioural features. J Psychiatr Res 1990; 24: 97–109.

    Article  PubMed  CAS  Google Scholar 

  45. Friedland RP, Brun A, Budinger TF. Pathological and positron emission tomographic correlations in Alzheimer’s disease. Lancet 1985; i: 228–230.

    Google Scholar 

  46. Cutler NR, Haxby JV, Duara R et al. Clinical history, brain metabolism, and neuropsychological function in Alzheimer’s disease. Ann Neurol 1985; 18: 298–309.

    Article  PubMed  CAS  Google Scholar 

  47. Duara R, Grady C, Haxby J et al. Positron emission tomography in Alzheimer’s disease. Neurology 1986; 36: 879–887.

    Article  PubMed  CAS  Google Scholar 

  48. Hubbard BM, Anderson JM. A quantitative study of cerebral atrophy in old age and senile dementia. J Neurol Sci 1981; 50: 135–145.

    Article  PubMed  CAS  Google Scholar 

  49. Hansen LA, Teresa R, Davies P et al. Neocortical morphometry, lesion count and choline acetyl transferase levels in the age spectrum of Alzheimer’s disease. Neurology 1988; 38: 48–54.

    Article  PubMed  CAS  Google Scholar 

  50. De la Monte S. Quantitation of cerebral atrophy in preclinical and end-stage Alzheimer’s disease. Ann Neurol 1989; 25: 450–459.

    Article  PubMed  Google Scholar 

  51. Mann DMA. The topographic distribution of brain atrophy in Alzheimer’s disease. Acta Neuropathol 1991; 83: 81–86.

    Article  PubMed  CAS  Google Scholar 

  52. Terry RD, Peck A, De Teresa R et al. Some morphometric aspects of the brain in senile dementia of the Alzheimer type. Ann Neurol 1981; 10: 184–192.

    Article  PubMed  CAS  Google Scholar 

  53. Mann DA, Yates PO, Marcyniuk B. Some morphometric observations on the cerebral cortex and hippocampus in presenile Alzheimer’s disease, senile dementia of Alzheimer type and Down’s syndrome in middle age. J Neurol Sci 1985; 69: 139–159.

    Article  PubMed  CAS  Google Scholar 

  54. Mille AH, Alston RL, Corsellis JAN. Variation with age in the volumes of grey and white matter in the cerebral hemispheres of man: measurements with an image analyser. Neuropath Appl Neurobiol 1980; 6: 119–132.

    Article  Google Scholar 

  55. Regeur L, Jensen GB, Pakkenberg H et al. No global neocortical nerve cell loss in brains from patients with senile dementia of Alzheimer’s type. Neurobiol Aging 1994; 15: 347–352.

    Article  PubMed  CAS  Google Scholar 

  56. Tomlinson BE, Blessed G, Roth M. Observations on the brains of demented old people. J Neurol Sci 1970; 11: 205–242.

    Article  PubMed  CAS  Google Scholar 

  57. Neary D, Snowden JS, Mann DMA et al. Alzheimer’s disease: a correlative study. J Neurol Neurosurg Psychiatry 1986; 49: 229–237.

    Article  PubMed  CAS  Google Scholar 

  58. Duyckaerts C, Hauw JJ, Piette F et al. Cortical atrophy in senile dementia of Alzheimer type is mainly due to a decrease in cortical length. Acta Neuropathol 1985; 66: 72–74.

    Article  PubMed  CAS  Google Scholar 

  59. Shefer VF. Absolute numbers of neurones and thickness of the cerebral cortex during aging, senile and vascular dementia, and Pick’s and Alzheimer’s diseases. Neurosci Behav Physiol 1973; 6: 319–324.

    Article  PubMed  CAS  Google Scholar 

  60. Colon EJ. The cerebral cortex in presenile dementia. A quantitative analysis. Acta Neuropathol 1973; 23: 281–290.

    Article  CAS  Google Scholar 

  61. Mountjoy CQ, Roth M, Evans NJR et al. Cortical neuronal counts in normal elderly controls and demented patients. Neurobiol Aging 1983; 4: 1–11.

    Article  PubMed  CAS  Google Scholar 

  62. Brun A, Englund E. Regional pattern of degeneration in Alzheimer’s disease: neuronal loss and histopathological grading. Histopathology 1981; 5: 549–564.

    Article  PubMed  CAS  Google Scholar 

  63. Hubbard BM, Anderson JM. Age-related variations in the neurone content of the cerebral cortex in senile dementia of Alzheimer type. Neuropath Appl Neurobiol 1985; 11: 369–382.

    Article  CAS  Google Scholar 

  64. Tomlinson BE, Henderson G. Some quantitative cerebral findings in normal and demented old people. In: Terry RD, Gerhon S, eds. Neurobiology of Aging, ed. New York: Raven Press, 1976: 183–204.

    Google Scholar 

  65. Ball MJ. Neuronal loss, neurofibrillary tangles and granulovacuolar degeneration in the hippocampus with aging and dementia. A quantitative study. Acta Neuropathol 1977; 37: 111–118.

    Article  PubMed  CAS  Google Scholar 

  66. Shefer VF. Hippocampal pathology as a possible factor in the pathogenesis of senile dementias. Neurosci Behav Physiol 1977; 8: 236–239.

    Article  PubMed  CAS  Google Scholar 

  67. Hyman BT, Damasio AR, van Hoesen GW et al. Alzheimer’s disease: cell-specific pathology isolates the hippocampal formation. Science 1984; 225: 1168–1170.

    Article  PubMed  CAS  Google Scholar 

  68. Doebler JA, Markesbery WR, Anthony A et al. Neuronal RNA in relation to neuronal loss and neurofibrillary pathology in the hippocampus in Alzheimer’s disease. J Neuropathol Exp Neurol 1987; 46: 28–39.

    Article  PubMed  CAS  Google Scholar 

  69. Davies DC, Horwood N, Isaacs SL et al. The effect of age and Alzheimer’s disease in pyramidal neurone density in the individual fields of the hippocampal formation. Acta Neuropathol 1992; 83: 510–517.

    Article  PubMed  CAS  Google Scholar 

  70. Cras P, Smith MA, Richey PL et al. Extracellular neurofibrillary tangles reflect neuronal loss and provide further evidence of extensive protein cross-linking in Alzheimer disease. Acta Neuropathol 1995; 89: 291–295.

    Article  PubMed  CAS  Google Scholar 

  71. Braak H, Braak E. On areas of transition between entorhinal allocortex and temporal isocortex within human brain. Normal morphology and laminar specific pathology. Acta Neuropathol 1985; 68: 325–332.

    Article  PubMed  CAS  Google Scholar 

  72. Hooper MW, Vogel FS. The limbic system in Alzheimer’s disease. Am J Pathol 1976; 85: 1–13.

    Google Scholar 

  73. Herzog AG, Kemper TL. Amygdaloid changes in aging and dementia. Arch Neurol 1980; 37: 625–629.

    Article  PubMed  CAS  Google Scholar 

  74. Saper CB, German DC, White CL. Neuronal pathology in the nucleus basalis and associated cell groups in senile dementia of Alzheimer type: possible role in cell loss. Neurology 1985; 35: 1089–1095.

    Article  PubMed  CAS  Google Scholar 

  75. Unger JW, McNeill TH, Lapham LL et al. Neuropeptides and neuropathology in the amygdala in Alzheimer’s disease: relationship between somatostatin, neuropeptide Y and subregional distribution of neuritic plaques. Brain Res 1988; 452: 293–302.

    Article  PubMed  CAS  Google Scholar 

  76. Brashear HR, Godec MS, Carlsen J. The distribution of neuritic plaques and acetylcholinesterase staining in the amygdala in Alzheimer’s disease. Neurology 1988; 38: 1694–1699.

    Article  PubMed  CAS  Google Scholar 

  77. Tsuchiya K, Kosaka K. Neuropathological study of the amygdala in presenile Alzheimer’s disease. J Neurol Sci 1990; 100: 165–173.

    Article  CAS  Google Scholar 

  78. Murphy GM, Eng LF, Ellis WG et al. Antigenic profile of plaques and neurofibrillary tangles in the amygdala in Down’s syndrome: a comparison with Alzheimer’s disease. Brain Res 1990; 537: 102–108.

    Article  PubMed  CAS  Google Scholar 

  79. Hyman BT, Van Hoesen GW, Damasio AR. Memory related neural systems in Alzheimer’s disease; An anatomic study. Neurology 1990; 40: 1721–1730.

    Article  PubMed  CAS  Google Scholar 

  80. Scott SA, DeKosky ST, Sparks DL et al. Amygdala cell loss and atrophy in Alzheimer’s disease. Ann Neurol 1992; 32: 555–563.

    Article  PubMed  CAS  Google Scholar 

  81. Kromer-Vogt LJ, Hyman BT, van Hoesen GW et al. Pathologic alterations in the amygdala in Alzheimer’s disease. Neuroscience 1990; 37: 377–385.

    Article  PubMed  CAS  Google Scholar 

  82. Mann DMA, Tucker CM, Yates PO. The topographic distribution of senile plaques and neurofibrillary tangles in the brains of non-demented persons of different ages. Neuropath Appl Neurobiol 1987; 13: 123–139.

    Article  CAS  Google Scholar 

  83. Li Y-T, Woodruff-Pak DS, Trojanowski JQ. Amyloid plaques in the cerebellar cortex and the integrity of Purkinje cell dendrites. Neurobiol Aging 1993; 15: 1–9.

    Article  CAS  Google Scholar 

  84. Mann DMA, Jones D, Prinja D et al. The prevalence of amyloid (A4) protein deposits within the cerebral and cerebellar cortex in Down’s syndrome and Alzheimer’s disease. Acta Neuropathol 1990; 80: 318–327.

    Article  PubMed  CAS  Google Scholar 

  85. Nakano I, Hirano A. Loss of large neurones of the medial septal nucleus in an autopsy case of Alzheimer’s disease. J Neuropathol Exp Neurol 1981; 41: 341.

    Google Scholar 

  86. Whitehouse PJ, Price DL, Struble RG et al. Alzheimer’s disease and senile dementia: loss of neurons in the basal forebrain. Science 1982; 215: 1237–1239.

    Article  PubMed  CAS  Google Scholar 

  87. Perry RH, Candy JM, Perry EK et al. Extensive loss of choline acetyl transferase activity is not related to neuronal loss in the nucleus basalis of Meynert in Alzheimer’s disease. Neurosi Lett 1982; 33: 311–315.

    Article  CAS  Google Scholar 

  88. Candy JM, Perry RH, Perry EK et al. Pathological changes in the nucleus of Meynert in Alzheimer’s and Parkinson’s diseases. J Neurol Sci 1983; 59: 277–289.

    Article  PubMed  CAS  Google Scholar 

  89. Wilcock GK, Esiri MM, Bowen DM et al. The nucleus basalis in Alzheimer’s disease; cell counts and cortical biochemistry. Neuropath Appl Neurobiol 1983; 9: 175–179.

    Article  CAS  Google Scholar 

  90. Tagliavini F, Pilleri G. Basal nucleus of Meynert. J Neurol Sci 1983; 62: 243–260.

    Article  PubMed  CAS  Google Scholar 

  91. Mann DMA, Yates PO, Marcyniuk B. Changes in nerve cells of the nucleus basalis of Meynert in Alzheimer’s disease and their relationship to aging and the accumulation of lipofuscin pigment. Mech Aging Dev 1984; 25: 189–204.

    Article  PubMed  CAS  Google Scholar 

  92. Mann DMA, Yates PO, Marcyniuk B. A comparison of changes in the nucleus basalis and locus caeruleus in Alzheimer’s disease. J Neurol Neurosurg Psychiatry 1984; 47: 201–203.

    Article  PubMed  CAS  Google Scholar 

  93. Mann DMA, Yates PO, Marcyniuk B. Alzheimer’s presenile dementia, senile dementia of Alzheimer type and Down’s syndrome in middle age form an age-related continuum of pathological changes. Neuropath Appl Neurobiol 1984; 10: 185–207.

    Article  CAS  Google Scholar 

  94. Arendt T, Bigl V, Arendt A et al. Loss of neurones in the nucleus basalis of Meynert in Alzheimer’s disease, paralysis agitans and Korsakoffs disease. Acta Neuropathol 1983; 61: 101–108.

    Article  PubMed  CAS  Google Scholar 

  95. Arendt T, Bigl V, Tennstedt A et al. Correlation between cortical plaque count and neuronal loss in nucleus basalis in Alzheimer’s disease. Neurosci Lett 1984; 48: 81–85.

    Article  PubMed  CAS  Google Scholar 

  96. Arendt T, Bigl V, Tennstedt A et al. Neuronal loss in different parts of the nucleus basalis is related to neuritic plaque formation in cortical target areas in Alzheimer’s disease. Neuroscience 1985; 14: 1–14.

    Article  PubMed  CAS  Google Scholar 

  97. Nagal T, McGeer PL, Peng JH et al. Choline acetyl transferase immunohistochemistry in brains of Alzheimer’s patients and controls. Neurosci Lett 1983; 36: 195–199.

    Article  Google Scholar 

  98. McGeer PL, McGeer EG, Suzuki JS et al. Aging, Alzheimer’s disease and the cholinergic system of the basal forebrain. Neurology 1984; 34: 741–745.

    Article  PubMed  CAS  Google Scholar 

  99. Rogers JD, Brogan D, Mirra SS. The nucleus basalis of Meynert in neurological disease: A quantitative morphological study. Ann Neurol 1985; 17: 163–170.

    Article  PubMed  CAS  Google Scholar 

  100. Doucette R, Fisman M, Hachinsky VC et al. Cell loss from the nucleus basalis of Meynert in Alzheimer’s disease. Can J Neurol Sci 1986; 13: 435–440.

    PubMed  CAS  Google Scholar 

  101. Doucette R, Ball MJ. Left-right symmetry of neuronal cell counts in the nucleus basalis of Meynert of control and of Alzheimer diseased brains. Brain Res 1987; 422: 357–360.

    Article  PubMed  CAS  Google Scholar 

  102. Ichimiya Y, Aral H, Kosaka K et al. Morphological and biochemical changes in the cholinergic and monoaminergic systems in Alzheimer type dementia. Acta Neuropathol 1986; 70: 112–116.

    Article  PubMed  CAS  Google Scholar 

  103. Allen SJ, Dawbarn D, Wilcock GK. Morphometric immunochemical analysis of neurones in the nucleus basalis of Meynert in Alzheimer’s disease. Brain Res 1988; 454: 275–281.

    Article  PubMed  CAS  Google Scholar 

  104. De Lacalle S, Iraizoz I, Ma Gonzalo L. Differential changes in cell size and number in topographic subdivisions of human basal nucleus in normal aging. Neuroscience 1991; 43: 445–456.

    Article  PubMed  Google Scholar 

  105. Pearson RCA, Sofroniew MV, Cuello AC et al. Persistence of cholinergic neurons in the basal nucleus in a brain with senile dementia of the Alzheimer’s type demonstrated by immunohistochemical staining for choline acetyltransferase. Brain Res 1983; 289: 375–379.

    Article  PubMed  CAS  Google Scholar 

  106. Tomlinson BE, Irving D, Blessed G. Cell loss in the locus caeruleus in senile dementia of Alzheimer type. J Neurol Sci 1981; 49: 419–428.

    Article  PubMed  CAS  Google Scholar 

  107. Bondareff W, Mountjoy CQ, Roth M. Loss of neurones of origin of the adrenergic projection to cerebral cortex (nucleus locus caeruleus) in senile dementia. Neurology 1992; 32: 164–168.

    Article  Google Scholar 

  108. Mann DMA, Yates PO, Hawkes J. The noradrenergic system in Alzheimer and multi-infarct dementias. J Neurol Neurosurg Psychiatry 1982; 45: 113–119.

    Article  PubMed  CAS  Google Scholar 

  109. Mann DMA, Yates PO, Hawkes J. The pathology of the human locus caeruleus. Clin Neuropathol 1983; 2: 1–7.

    PubMed  CAS  Google Scholar 

  110. Mann DMA, Yates PO, Marcyniuk B. Changes in Alzheimer’s disease in the magnocellular neurones of the supraoptic and paraventricular nuclei of the hypothalamus and their relationship to the noradrenergic deficit. Clin Neuropathol 1985; 4: 127–134.

    PubMed  CAS  Google Scholar 

  111. Iversen LL, Rossor MN, Reynolds GP et al. Loss of pigmented dopamine β hydroxylase positive cells from locus caeruleus in senile dementia of Alzheimer’s type. Neurosci Lett 1983; 39: 95–100.

    Article  PubMed  CAS  Google Scholar 

  112. Chui HC, Mortimer JA, Slager UT et al. Pathological correlates of dementia in Parkinson’s disease. ArchNeurol 1986; 43: 991–995.

    CAS  Google Scholar 

  113. Marcyniuk B, Mann DMA, Yates PO. The topography of cell loss from locus caeruleus in Alzheimer’s disease. J Neurol Sci 1986; 76: 335–345.

    Article  PubMed  CAS  Google Scholar 

  114. Zweig RM, Ross CA, Hedreen JC et al. The neuropathology of aminergic nuclei in Alzheimer’s disease. Ann Neurol 1988; 24: 233–242.

    Article  PubMed  CAS  Google Scholar 

  115. Chan-Palay V, Asan E. Alterations in catecholamine neurons of the locus coeruleus in senile dementia of the Alzheimer type and in Parkinson’s disease with and without dementia and depression. J Comp Neurol 1989; 287: 373–392.

    Article  PubMed  CAS  Google Scholar 

  116. Strong R, Huang JS, Huang SS et al. Degeneration of the cholinergic innervation of the locus caeruleus in Alzheimer’s disease. Brain Res 1991; 542: 23–28.

    Article  PubMed  CAS  Google Scholar 

  117. German DC, Manaye KF, White CL et al. Disease specific patterns of locus caeruleus cell loss: Parkinson disease, Alzheimer’s disease and Down’s syndrome. Ann Neurol 1992; 32: 667–676.

    Article  PubMed  CAS  Google Scholar 

  118. Giess R, Schlote W. Localisation and association of pathomorphological changes at the brainstem in Alzheimer’s disease. Mech Aging Dev 1995; 84: 209–226.

    Article  PubMed  CAS  Google Scholar 

  119. Hoogendijk WJG, Pool CW, Troost D et al. Image analyser-assisted morphometry of the locus coeruleus in Alzheimer’s disease, Parkinson’s disease and amyotrophic lateral sclerosis. Brain 1995; 118: 131–143.

    Article  PubMed  Google Scholar 

  120. Ishii T. Distribution of Alzheimer’s neurofibrillary changes in brain stem and hypothalamus of senile dementia. Acta Neuropathol 1966; 38: 181–187.

    Article  Google Scholar 

  121. Hirano A, Zimmerman HM. Alzheimer’s neurofibrillary changes. A topographic study. Arch Neurol 1962; 7: 73–88.

    Google Scholar 

  122. Curcio CA, Kemper T. Nucleus raphe dorsalis in dementia of the Alzheimer type: neurofibrillary changes and neuronal packing density. J Neuropathol Exp Neurol 1985; 43: 359–368.

    Article  Google Scholar 

  123. Yamamoto T, Hirano A. Nucleus raphe dorsalis in Alzheimer’s disease: neurofibrillary tangles and loss of large neurons. Ann Neurol 1985; 17: 573–577.

    Article  PubMed  CAS  Google Scholar 

  124. Tabaton M, Schenone A, Romagnoli P et al. A quantitative and ultrastructural study of substantia nigra and nucleus centralis superior in Alzheimer’s disease. Acta Neuropathol 1985; 68: 213–223.

    Article  Google Scholar 

  125. Jellinger K. Quantitative changes in some subcortical nuclei in aging, Alzheimer’s disease and Parkinson’s disease. Neurobiol Aging 1987; 8: 556–561.

    Article  PubMed  CAS  Google Scholar 

  126. Mann DMA, Yates PO, Marcyniuk B. Dopaminergic neurotransmitter systems with Alzheimer’s disease and Down’s syndrome at middle age. J Neurol Neurosurg Psychiatry 1987; 50: 341–344.

    Article  PubMed  CAS  Google Scholar 

  127. Gibb WRG, Mountjoy CQ, Mann DMA et al. The substantia nigra and ventral tegmental area in Alzheimer’s disease and Down’s syndrome. J Neurol Neurosurg Psychiatry 1989; 52: 193–200.

    Article  PubMed  CAS  Google Scholar 

  128. Mann DMA, Yates PO, Marcyniuk B. Monoaminergic neurotransmitter systems in presenile Alzheimer’s disease and in senile dementia of Alzheimer type. Clin Neuropathol 1984; 3: 199–205.

    PubMed  CAS  Google Scholar 

  129. German DC, White CL, Sparkman DR. Alzheimer’s disease: neurofibrillary tangles in nuclei that project to the cerebral cortex. Neuroscience 1987; 21: 305–312.

    Article  PubMed  CAS  Google Scholar 

  130. Lehericy S, Hirsch EC, Hersh LB et al. Cholinergic neuronal loss in the globus pallidus of Alzheimer’s disease patients. Neurosci Lett 1991; 123: 152–155.

    Article  PubMed  CAS  Google Scholar 

  131. Lehericy S, Hirsch EC, Cervera P et al. Selective loss of cholinergic neurones in the ventral striatum of patients with AD. Proc Natl Acad Sci (USA) 1989; 86: 8580–8584.

    Article  CAS  Google Scholar 

  132. Xuereb JH, Perry EK, Candy JM et al. Parameters of cholinergic neurotransmission in the thalamus in Parkinson’s disease and Alzheimer’s disease. J Neurol 1990; 99: 185–197.

    CAS  Google Scholar 

  133. Oyanagi K, Takahashi H, Wakabayashi K et al. Selective involvement of large neurones in the neostriatum of Alzheimer’s disease and senile dementia: A morphometric investigation. Brain Res 1987; 411: 205–211.

    Article  PubMed  CAS  Google Scholar 

  134. Oyanagi K, Takahashi H, Wakayashi K et al. Correlative decrease of large neurones in the neostriatum and basal nucleus of Meynert in Alzheimer’s disease. Brain Res 1989; 504: 354–357.

    Article  Google Scholar 

  135. Oyanagi K, Takahashi H, Wakabayashi K et al. Large neurons in the neostriatum in Alzheimer’s disease and progressive supranuclear palsy: a topographic, histologic and ultrastructural investigation. Brain Res 1991; 544: 221–226.

    Article  PubMed  CAS  Google Scholar 

  136. Masliah E, Terry RD, Buzsaki G. Thalamic nuclei in Alzheimer’s disease—evidence against the cholinergic hypothesis of plaque formation. Brain Res 1989; 493: 240–246.

    Article  PubMed  CAS  Google Scholar 

  137. Tourtellotte WG, Van Hoesen GW, Hyman BT et al. Alz-50 immunoreactivity in the thalamic reticular nucleus in Alzheimer’s disease. Brain Res 1989; 515: 227–234.

    Article  Google Scholar 

  138. Braak H, Braak E. Alzheimer’s disease affects limbic nuclei of the thalamus. Acta Neuropathol 1991; 81: 261–268.

    Article  PubMed  CAS  Google Scholar 

  139. Swaab DF, Fliers E, Partiman TS. The suprachiasmatic nucleus of the human brain in relation to sex, age and senile dementia. Brain Res 1985; 342: 37–44.

    Article  PubMed  CAS  Google Scholar 

  140. Kremer B, Swaab D, Bots G et al. The hypothalamic lateral tuberal nucleus in Alzheimer’s disease. Ann Neurol 1991; 29: 279–284.

    Article  PubMed  CAS  Google Scholar 

  141. Zhou J-N, Hofman MA, Swaab DF. VIP neurons in the human SCN in relation to sex, age, and Alzheimer’s disease. Neurobiol Aging 1995; 16: 571–576.

    Article  PubMed  CAS  Google Scholar 

  142. Wilkinson A, Davies I. The influence of age and dementia on the neurone population of the mammillary bodies. Age Aging 1978; 7: 151–160.

    Article  CAS  Google Scholar 

  143. Scheff SW, Price DA. Synapse loss in the temporal lobe in Alzheimer’s disease. Ann Neurol 1993; 33: 190–199.

    Article  PubMed  CAS  Google Scholar 

  144. Scheff SW, DeKosky ST, Price DA. A quantitative assessment of cortical synaptic density in Alzheimer’s disease. Neurobiol Aging 1990; 11: 29–37.

    Article  PubMed  CAS  Google Scholar 

  145. Davies CA, Mann DMA, Sumpter PQ et al. A quantitative analysis of the neuronal and synaptic content of the frontal and temporal cortex in patients with Alzheimer’s disease. J Neurol Sci 1987; 78: 151–164.

    Article  PubMed  CAS  Google Scholar 

  146. Gibson PH. EM Study of the numbers of cortical synapses in the brains of aging people and people with Alzheimer-type dementia. Acta Neuropathol 1983; 62: 127–133.

    Article  PubMed  CAS  Google Scholar 

  147. DeKosky ST, Scheff SW. Synpase loss in frontal cortex biopsies in Alzheimer’s disease: correlation with cognitive severity. Ann Neurol 1990; 27: 457–464.

    Article  PubMed  CAS  Google Scholar 

  148. Masliah E, Hansen T, Mallory M et al. Immunoelectron microscopic study of synaptic pathology in Alzheimer’s disease. Acta Neuropathol 1991; 81: 428–433.

    Article  PubMed  CAS  Google Scholar 

  149. Mann DMA, Yates PO. Neurotransmitter deficits in Alzheimer’s disease and in other dementing disorders. Hum Neurobiol 1986; 5: 147–158.

    PubMed  CAS  Google Scholar 

  150. Hedera P, Whitehouse PJ. Neurotransmitters in neurodegeneration. In: Calne DB, ed. Neurodegenerative Diseases. Philadelphia, London, Toronto, Montreal, Sydney, Tokyo: WB Saunders Co, 1994: 97–117.

    Google Scholar 

  151. Parker WD, Parks J, Filley CM et al. Electron chain transfer defects in Alzheimer brain. Neurology 1994; 44: 1090–1096.

    Article  PubMed  Google Scholar 

  152. Simonian NA, Hyman BT. Functional alterations in Alzheimer’s disease: Diminution of cytochrome oxidase in the hippocampal formation. J Neuropathol Exp Neurol 1993; 52: 580–585.

    Article  PubMed  CAS  Google Scholar 

  153. Mutisya EM, Bowling AC, Walker LC et al. Impaired energy metabolism in aging and Alzheimer’s disease. Soc Neurosci Abs 1993; 19: 1474.

    Google Scholar 

  154. Simonian NA, Hyman BT. Functional alterations in Alzheimer’s disease: selective loss of mitochondrial-encoded cytochrome oxidase mRNA in the hippocampal formation. J Neuropathol Exp Neurol 1994; 53: 508–512.

    Article  PubMed  CAS  Google Scholar 

  155. Sims NR, Finegan JM, Blass JP. Altered metabolic properties of cultured skin fibro-blasts in Alzheimer’s disease. Ann Neurol 1987; 21: 451–457.

    Article  PubMed  CAS  Google Scholar 

  156. Blass JP, Gibson GE, Sheu K-FR et al. Mitochondria, aging and neurological diseases. In: Zatta P, Nicolini M, eds. Non-Neuronal Cells in Alzheimer’s Disease. Singapore, New Jersey, London, Hong Kong: World Scientific, 1995: 95–107.

    Google Scholar 

  157. Sumpter PQ, Mann DMA, Davies CA et al. An ultrastructural analysis of the effects of accumulation of neurofibrillary tangle in pyramidal cells of the cerebral cortex in Alzheimer’s disease. Neuropath Appl Neurobiol 1986; 12: 305–319.

    Article  CAS  Google Scholar 

  158. Mann DMA, Yates PO, Barton CM. Cytophotometric mapping of neuronal changes in senile dementia. J Neurol Neurosurg Psychiatry 1977; 40: 299–302.

    Article  PubMed  CAS  Google Scholar 

  159. Mann DMA, Sinclair KGA. The quantitative assessment of lipofuscin pigment, cytoplasmic RNA and nucleolar volume in senile dementia. Neuropath Appl Neurobiol 1978; 4: 129–135.

    Article  CAS  Google Scholar 

  160. Mann DMA, Yates PO. The relationship between formation of senile plaques and neurofibrillary tangles and changes in nerve cell metabolism in Alzheimer-type dementia. Mech Aging Dev 1981; 17: 395–401.

    Article  PubMed  CAS  Google Scholar 

  161. Doebler JA, Markesbery WR, Anthony A et al. Neuronal RNA in relation to Alz-50 immunoreactivity in Alzheimer’s disease. Ann Neurol 1988; 23: 20–24.

    Article  PubMed  CAS  Google Scholar 

  162. Doebler JA, Rhoads RE, Anthony A et al. Neuronal RNA in Pick’s and Alzheimer’s diseases. Arch Neurol 1989; 46: 134–137.

    Article  PubMed  CAS  Google Scholar 

  163. Mann DMA, Neary D, Yates PO et al. Neurofibrillary pathology and protein synthetic capability in nerve cells in Alzheimer’s disease. Neuropath Appl Neurobiol 1981; 7: 37–47.

    Article  CAS  Google Scholar 

  164. Mann DMA, Neary D, Yates PO et al. Alterations in protein synthetic capability in nerve cells in Alzheimer’s disease. J Neurol Neurosurg Psychiatry 1981; 44: 97–102.

    Article  PubMed  CAS  Google Scholar 

  165. Scheibel ME, Lindsay RD, Tomiyasu U et al. Progressive dendritic changes in the aging human cortex. Exp Neurol 1975; 47: 392–403.

    Article  PubMed  CAS  Google Scholar 

  166. Scheibel ME, Lindsay RD, Tomiyasu U et al. Progressive dendritic changes in the aging human limbic system. Exp Neurol 1976; 53: 420–430.

    Article  PubMed  CAS  Google Scholar 

  167. Scheibel ME, Tomiyasu U, Scheibel AB. The aging human Betz cell. Exp Neurol 1977; 56: 598–609.

    Article  PubMed  CAS  Google Scholar 

  168. Buell SJ, Coleman PD. Dendritic growth in the aged human brain and fallure of growth in senile dementia. Science 1979; 206: 854–856.

    Article  PubMed  CAS  Google Scholar 

  169. Buell SJ, Coleman PD. Quantitative evidence for selective dendritic growth in normal human aging but not in senile dementia. Brain Res 1981; 214: 23–41.

    Article  PubMed  CAS  Google Scholar 

  170. Flood DG, Buell SJ, Horwitz GJ et al. Dendritic extent in human dentate gyrus granule cells in normal aging and senile dementia. Brain Res 1987; 402: 205–216.

    Article  Google Scholar 

  171. Flood DG, Guarnaccia M, Coleman PD. Dendritic extent in human CA2/3 hippoc-ampal pyramidal neurones in normal aging and senile dementia. Brain Res 1987; 409: 88–96.

    Article  PubMed  CAS  Google Scholar 

  172. Braak H, Braak E, Grundke-Iqbal I et al. Occurrence of neuropil threads in the senile human brain and in Alzheimer’s disease: a third location of paired helical filaments outside of neurofibrillary tangles and neuritic plaques. Neurosci Lett 1986; 65: 351–355.

    Article  PubMed  CAS  Google Scholar 

  173. Ihara Y. Massive somatodendritic sprouting of cortical neurons in Alzheimer’s disease. Brain Res 1988; 459: 138–144.

    Article  PubMed  CAS  Google Scholar 

  174. Terry RD, Masliah E, Salmon P et al. Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 1991; 30: 572–580.

    Article  PubMed  CAS  Google Scholar 

  175. Masliah E, Terry RD, DeTeresa RM et al. Immunohistochemical quantification of the synapse-related protein synaptophysin in Alzheimer disease. Neurosci Lett 1989; 103: 234–239.

    Article  Google Scholar 

  176. Honer WG, Dickson DW, Gleeson J et al. Regional synaptic pathology in Alzheimer’s pathology. Neurobiol Aging 1992; 13: 375–382.

    Article  PubMed  CAS  Google Scholar 

  177. Hamos JE, DeGennaro LJ, Drachman DA. Synaptic loss in Alzheimer’s disease and other dementias. Neurology 1989; 39: 355–361.

    Article  PubMed  CAS  Google Scholar 

  178. Zhan S-S, Beyreuther K, Schmitt HP. Quantitative assessment of the synaptophysin immuno-reactivity of the cortical neuropil in various neurodegenerative disorders with dementia. Dementia 1993; 4: 66–74.

    PubMed  CAS  Google Scholar 

  179. Brun A, Liu X, Erikson C. Synapse loss and gliosis in the molecular layer of the cerebral cortex in Alzheimer’s disease and in frontal lobe degeneration. Neurodegeneration 1995; 4: 171–177.

    Article  PubMed  CAS  Google Scholar 

  180. Heinonen O, Lehtovirta M, Soininen H et al. Alzheimer pathology of patients carrying apolipoprotein E E4 allele. Neurobiol Aging 1995; 16: 505–513.

    Article  PubMed  CAS  Google Scholar 

  181. Masliah E, Terry RD, Mallory M et al. Diffuse plaques do not accentuate synapse loss in Alzheimer’s disease. Am J Pathol 1990; 137: 1293–1297.

    PubMed  CAS  Google Scholar 

  182. Wisniewski HM, Wegiel J, Kotula L. Some neuropathological aspects of Alzheimer’s disease and its relevance to other disciplines. Neuropath Appl Neurobiol 1996; 22: 3–11.

    Article  CAS  Google Scholar 

  183. Rebeck GW, Reiter JS, Strickland DK et al. Apolipoprotein E in sporadic Alzheimer’s disease: Allelic variation and receptor interactions. Neuron 1993; 11: 575–580.

    Article  PubMed  CAS  Google Scholar 

  184. Schmechel D, Saunders AM, Strittmatter WJ et al. Increased amyloid β peptide deposition in cerebral cortex as a consequence of apolipoprotein E genotype in late-onset Alzheimer disease. Proc Natl Acad Sci (USA) 1993; 90: 9649–9653.

    Article  CAS  Google Scholar 

  185. Benjamin R, Leake A, Ince PG et al. Effects of apolipoprotein E genotype on cortical neuropathology in senile dementia of the Lewy body type and Alzheimer’s disease. Neurodegeneration 1995; 4: 443–448.

    Article  PubMed  CAS  Google Scholar 

  186. Harrington CR, Louwagie J, Rossau R et al. Influence of apolipoprotein E genotype on senile dementia of the Alzheimer and Lewy body types. Am J Pathol 1994; 145: 1472–1484.

    PubMed  CAS  Google Scholar 

  187. Esiri MM, Pearson RCA, Powell TPS. Thecortex of the primary auditory area in Alzheimer’s disease. Brain Res 1986; 366: 385–387.

    Article  PubMed  CAS  Google Scholar 

  188. Pearson RCA, Hiorns RW, Wilcock GK et al. Anatomical correlates of the distribution of the pathological changes in the neocortex in Alzheimer’s disease. Proc Natl Acad Sci (USA) 1985; 82: 4531–4534.

    Article  CAS  Google Scholar 

  189. Beach TG, McGeer EG. Lamina-specific arrangement of astrocytic gliosis and senile plaques in Alzheimer’s disease visual cortex. Brain Res 1988; 463: 357–361.

    Article  PubMed  CAS  Google Scholar 

  190. Braak H, Braak E, Kalus P. Alzheimer’s disease: areal and laminar pathology in the occipital isocortex. Atta Neuropathol 1989; 77:494–506.

    Article  CAS  Google Scholar 

  191. Rogers J, Morrison JH. Quantitative morphology and regional and laminar distributions of senile plaques in Alzheimer’s disease. J Neurosci 1985; 5: 2801–2808.

    PubMed  CAS  Google Scholar 

  192. Lewis DA, Campbell MJ, Terry RD et al. Laminar and regional distributions of neurofibrillary tangles and neuritic plaques in Alzheimer’s disease: A quantitative study of visual and auditory cortices. J Neurosci 1987; 7: 1799–1808.

    PubMed  CAS  Google Scholar 

  193. Braak H, Braak E. Neuropathological staging of Alzheimer-related changes. Acta Neuropathol 1991; 82: 239–259.

    Article  PubMed  CAS  Google Scholar 

  194. Bouras C, Hof PR, Morrison JH. Neurofibrillary tangle densities in the hippocampal formation in a non-demented population define subgroups of patients with differential early pathologic changes. Neurosci Lett 1993; 153: 131–135.

    Article  PubMed  CAS  Google Scholar 

  195. Giannakopoulos P, Hof PR, Mottier S et al. Neuropathological changes in the cerebral cortex of 1258 cases from a geriatric hospital: retrospective clinicopathological evaluation of a 10-year autopsy population. Acta Neuropathol 1994; 87: 456–468.

    Article  PubMed  CAS  Google Scholar 

  196. Mann DMA, Younis N, Jones D et al. The time course of pathological events concerned with plaque formation in Down’s syndrome with particular reference to the involvement of microglial cells. Neurodegeneration 1992; 1: 201–215.

    Google Scholar 

  197. Arriagada PV, Marzloff K, Hyman BT. Distribution of Alzheimer-type pathologic changes in non-demented elderly individuals matches the pattern in Alzheimer’s disease. Neurology 1992; 42: 1681–1688.

    Article  PubMed  CAS  Google Scholar 

  198. Mann DMA, Tucker CM, Yates PO. Alzheimer’s disease: an olfactory connection? Mech Aging Dev 1988; 42: 1–15.

    Article  PubMed  CAS  Google Scholar 

  199. Reyes PF, Golden GT, Fagel PL et al. The prepiriform cortex in dementia of the Alzheimer type. Arch Neurol 1987; 44: 644–645.

    Article  PubMed  CAS  Google Scholar 

  200. Esiri MM, Wilcock GK. The olfactory bulbs in Alzheimer’s disease. J Neurol Neurosurg Psychiatry 1984; 47: 56–60.

    Article  PubMed  CAS  Google Scholar 

  201. Ohm TG, Braak H. Olfactory bulb changes in Alzheimer’s disease. Acta Neuropathol 1987; 73: 365–369.

    Article  PubMed  CAS  Google Scholar 

  202. Armstrong RA, Slaven A. Does the neurodegeneration of Alzheimer’s disease spread between visual cortical regions B17 and B18 via the feedforward or feedback short cortico-cortical projections? Neurodegeneration 1994; 3: 191–196.

    Google Scholar 

  203. De LaCoste M-C, White CL. The role of cortical connectivity in Alzheimer’s disease pathogenesis: A review and model system. Neurobiol Aging 1993; 14: 1–16.

    Article  PubMed  Google Scholar 

  204. Ikeda S-I, Allsop D, Glenner GG. The morphology and distribution of plaque and related deposits in the brains of Alzheimer’s disease and control cases: an immunohistochemical study using amyloid β protein antibody. Lab Invest 1989; 60: 113–122.

    PubMed  CAS  Google Scholar 

  205. Bugiani O, Giaccone G, Frangione B et al. Alzheimer patients: preamyloid deposits are more widely distributed than senile plaques throughout the central nervous system. Neurosci Lett 1989; 103: 262–268.

    Google Scholar 

  206. Tagliavini F, Giaccone G, Frangione B et al. Preamyloid deposits in the cerebral cortex of patients with Alzheimer’s disease and non demented individuals. Neurosci Lett 1988; 93: 191–196.

    Article  PubMed  CAS  Google Scholar 

  207. Ogomori K, Kitamoto T, Tateishi J et al. β amyloid protein is widely distributed in the central nervous system of patients with Alzheimer’s disease. Am J Pathol 1989; 134: 243–251.

    PubMed  CAS  Google Scholar 

  208. Yamaguchi H, Hirai S, Morimatsu M et al. Diffuse type of senile plaques in the brains of Alzheimer-type dementia. Acta Neuropathol 1988; 77: 113–119.

    PubMed  CAS  Google Scholar 

  209. Yamaguchi H, Hirai S, Morimatsu M et al. A variety of cerebral amyloid deposits with brains of Alzheimer-type dementia demonstrated by β-protein immunostaining. Acta Neuropathol 1988; 76: 541–549.

    Article  PubMed  CAS  Google Scholar 

  210. Yamaguchi H, Hirai S, Morimatsu M et al. Diffuse type of senile plaques in the cerebellum of Alzheimer-type dementia detected by β-protein immunostaining. Acta Neuropathol 1989; 77: 314–319.

    Article  PubMed  CAS  Google Scholar 

  211. Wisniewski HM, Bancher C, Barcikowska M et al. Spectrum of morphological appearance of amyloid deposits in Alzheimer’s disease. Acta Neuropathol 1989; 78: 337–347.

    Article  PubMed  CAS  Google Scholar 

  212. Barcikowska M, Wisniewski HM, Bancher C et al. About the presence of paired helical filaments in dystrophic neuntes participating in the plaque formation. Acta Neuropathol 1989; 78: 225–231.

    Article  PubMed  CAS  Google Scholar 

  213. Price JL, Davis PB, Morris JC et al. The distribution of plaques, tangles and related immunohistochemical markers in healthy aging and Alzheimer’s disease. Neurobiol Aging 1991; 12: 295–312.

    Article  PubMed  CAS  Google Scholar 

  214. Giaccone G, Tagliavini F, Linoli G et al. Down patients: extracellular preamyloid deposits precede neuritic degeneration and senile plaques. Neurosci Lett 1989; 97: 232–238.

    Article  PubMed  CAS  Google Scholar 

  215. Brilliant M, Elble RJ, Ghobrial M et al. Distribution of amyloid in the brainstem of patients with Alzheimer disease. Neurosci Lett 1992; 148: 23–26.

    Article  PubMed  CAS  Google Scholar 

  216. Suenaga T, Hirano A, Llena JF et al. Modified Bielschowsky and immunocytochemical studies on cerebellar plaques in Alzheimer’s disease. J Neuropathol Exp Neurol 1990; 49: 31–40.

    Article  PubMed  CAS  Google Scholar 

  217. Suenaga T, Hirano A, Llena JF et al. Modified Bielschowsky staining and immunohistochemical studies on striatal plaques in Alzheimer’s disease. Acta Neuropathol 1990; 80: 280–286.

    Article  PubMed  CAS  Google Scholar 

  218. Cole G, Williams P, Alldrick D et al. Amyloid plaques in the cerebellum in Alzheimer’s disease. Clin Neuropathol 1989; 4: 188–191.

    Google Scholar 

  219. Cole G, Neal JW, Singrao SK et al. The distribution of amyloid plaques in the cerebellum and brain stem in Down’s syndrome and Alzheimer’s disease: a light microscopical analysis. Acta Neuropathol 1993; 85: 542–552.

    Article  PubMed  CAS  Google Scholar 

  220. Joachim CL, Morris JH, Selkoe DJ. Diffuse senile plaques occur commonly in the cerebellum in Alzheimer’s disease. Am J Pathol 1989; 135: 309–319.

    PubMed  CAS  Google Scholar 

  221. Mann DMA, Iwatsubo T, Snowden JS. Atypical amyloid (Aβ) deposition in the cerebellum in Alzheimer’s disease: an immunohistochemical study using end-specific Aβmonoclonal antibodies. Acta Neuropathol 1996; 91: 647–653.

    Article  PubMed  CAS  Google Scholar 

  222. Leuba G, Salni K. Pathology of subcortical visual centres in relation to cortical degeneration in Alzheimer’s disease. Neuropath Appl Neurobiol 1995; 21: 410–422.

    Article  CAS  Google Scholar 

  223. Iseki E, Matsushita M, Kosaka K et al. Distribution and morphology of brain stem plaques in Alzheimer’s disease. Acta Neuropathol 1989; 78: 131–136.

    Article  PubMed  CAS  Google Scholar 

  224. Standaert DG, Lee VM-Y, Greenberg BD et al. Molecular features of hypothalamic plaques in Alzheimer’s disease. Am J Pathol 1991; 139: 681–691.

    PubMed  CAS  Google Scholar 

  225. MacKenzie IRA, McKelvie PA, Beyreuther K et al. βA4 amyloid protein deposition in the cerebellum in Alzheimer’s disease and Down’s syndrome. Dementia 1991; 2: 237–242.

    Google Scholar 

  226. Braak H, Braak E, Bohl J et al. Alzheimer’s disease: amyloid plaques in the cerebellum. J Neurol Sci 1989; 93: 277–287.

    Article  PubMed  CAS  Google Scholar 

  227. McKee AC, Kosik KS, Kowall NW. Neuritic pathology and dementia in Alzheimer’s disease. Ann Neurol 1991; 30: 156–165.

    Article  PubMed  CAS  Google Scholar 

  228. Pro JD, Smith CH, Sumi SM. Presenile Alzheimer disease: amyloid plaques in the cerebellum. Neurology 1980; 30: 820–825.

    Article  PubMed  CAS  Google Scholar 

  229. Morioka E. Senile amyloid changes in the cerebellum with special reference to senile plaques and amyloid angiopathy. Neuropathol 1985; 6: 313–323.

    Google Scholar 

  230. Akiyama H, Yamada T, McGeer PL et al. Columnar arrangement of β-amyloid protein deposits in the cerebral cortex of patients with Alzheimer’s disease. Acta Neuropathol 1993; 85: 400–403.

    Article  PubMed  CAS  Google Scholar 

  231. Kosik KS, Rogers J, Kowall NW. Senile plaques are located between apical dendritic clusters. J Neuropathol Exp Neurol 1987; 46: 1–11.

    Article  PubMed  CAS  Google Scholar 

  232. Duyckaerts C, Hauw J-J, Bastenaire F et al. Laminar distribution of neocortical senile plaques in senile dementia of the Alzheimer type. Acta Neuropathol 1986; 70: 249–256.

    Article  PubMed  CAS  Google Scholar 

  233. Gentleman SM, Allsop D, Bruton CJ et al. Quantitative differences in the deposition of βA4 protein in the sulci and gyri of frontal temporal isocortex in Alzheimer’s disease. Neurosci Lett 1992; 136: 27–30.

    Article  PubMed  CAS  Google Scholar 

  234. Clinton J, Roberts GW, Gentleman SM et al. Differential pattern of β-amyloid protein deposition within cortical sulci and gyri in Alzheimer’s disease. Neuropath Appl Neurobiol 1993; 19: 277–281.

    Article  CAS  Google Scholar 

  235. McKenzie JE, Gentleman SM, Royston MC et al. Quantification of plaque types in sulci and gyri of medial frontal lobe in patients with Alzheimer’s disease. Neurosci Lett 1992; 143: 23–26.

    Article  PubMed  CAS  Google Scholar 

  236. Hassler D. Arterial deformities in senile brains. Acta Neuropathol 1967; 8: 219–229.

    Article  PubMed  CAS  Google Scholar 

  237. Ravens JR. Vascular changes in the human senile brain. In: Cervos-Navarra J, ed. Pathology of Cerebrospinal Microcirculation, ed. New York: Raven Press, 1978: 487–501.

    Google Scholar 

  238. Fischer VW, Siddiqi A, Yusufaly Y. Altered angioarchitecture in selected areas of brains with Alzheimer’s disease. Acta Neuropathol 1990; 79: 672–679.

    Article  PubMed  CAS  Google Scholar 

  239. Buee L, Hof PR, Bouras C et al. Pathological alterations of the cerebral microvasculature in Alzheimer’s disease and related dementing disorders. Acta Neuropathol 1994; 87: 469–480.

    Article  PubMed  CAS  Google Scholar 

  240. Mann DMA, Eaves NR, Marcyniuk B et al. Quantitative changes in cerebral cortical microvasculature in aging and dementia. Neurobiol Aging 1986; 7: 321–330.

    Article  PubMed  CAS  Google Scholar 

  241. Bell MA, Ball MJ. Morphometric comparison of hippocampal microvasculature in aging and demented people: diameter and densities. Acta Neuropathol 1981; 53: 299–318.

    Article  PubMed  CAS  Google Scholar 

  242. Kidd M. Alzheimer’s Disease-An electron microscopical study. Brain 1964; 87: 307–318.

    Article  PubMed  CAS  Google Scholar 

  243. Mancardi GL, Perdelli F, Rivano C et al. Thickening of the basement membrane of cortical capillaries in Alzheimer’s disease. Acta Neuropathol 1980; 49: 79–83.

    Article  PubMed  CAS  Google Scholar 

  244. Scheibel AB, Duong T, Jacobs R. Alzheimer’s disease as a capillary dementia. Ann Med 1989; 21: 103–107.

    Article  PubMed  CAS  Google Scholar 

  245. Mann DMA, Purkiss MS, Bonshek RE et al. Lectin histochemistry of cerebral microvessels in aging, Alzheimer’s disease and Down’s syndrome. Neurobiol Aging 1992; 13: 137–143.

    Article  PubMed  CAS  Google Scholar 

  246. Mancardi GL, Liwnicz BH, Mandybur TI. Fibrous astrocytes in Alzheimer’s disease and senile dementia of Alzheimer’s type. Acta Neuropathol 1983; 61: 76–80.

    Article  PubMed  CAS  Google Scholar 

  247. Schechter R, Yen S-HC, Terry RD. Fibrous astrocytes in senile dementia of the Alzheimer type. J Neuropathol Exp Neurol 1981; 40: 95–101.

    Article  PubMed  CAS  Google Scholar 

  248. Alafuzoff I, Adolfsson R, Bucht G et al. Albumin and immunoglobulin in plasma and cerebrospinal fluid, and blood-cerebrospinal fluid barrier function in patients with dementia of Alzheimer type and multi-infarct dementia. J Neurol Sci 1983; 60: 465–472.

    Article  PubMed  CAS  Google Scholar 

  249. Blennow K, Wallin A, Fredman P et al. Blood-brain barrier disturbance in patients with Alzheimer’s disease is related to vascular factors. Acta Neurol Scand 1990; 81: 323–326.

    Article  PubMed  CAS  Google Scholar 

  250. Elovaara I, Icen A, Palo J et al. CSF in Alzheimer’s disease: Studies on blood-brain barrier function and intrathecal protein synthesis. J Neurol Sci 1985; 70: 73–80.

    Article  PubMed  CAS  Google Scholar 

  251. Mann DMA, Davies JS, Yates PO et al. Immunohistochemical staining of senile plaques. Neuropath Appl Neurobiol 1982; 8: 55–61.

    Article  CAS  Google Scholar 

  252. Wisniewski HM, Kozlowski PB. Evidence for blood-brain barrier changes in senile dementia of the Alzheimer type (SDAT). Ann NY Acad Sci 1982; 396: 119–129.

    Article  PubMed  CAS  Google Scholar 

  253. Ishii T, Haga S. Immuno-electron microscopic localization of immunoglobulins in amyloid fibrils of senile plaques. Acta Neuropathol 1976; 36: 243–249.

    Article  PubMed  CAS  Google Scholar 

  254. Alafuzoff I, Adolfsson R, Grundke-Iqbal I et al. Peri vascular deposits of serum proteins in cerebral cortex in vascular dementia. Acta Neuropathol 1985; 66: 292–298.

    Article  PubMed  CAS  Google Scholar 

  255. Wallin A, Blennow K, Fredman P et al. Blood-brain barrier function in vascular dementia. Acta Neurol Scand 1990; 81: 318–322.

    Article  PubMed  CAS  Google Scholar 

  256. Glenner GG. On causative theories in Alzheimer’s disease. Hum Pathol 1985; 16: 433–435.

    Article  PubMed  CAS  Google Scholar 

  257. Vinters HV. Cerebral amyloid angiopathy. A critical review. Stroke 1987; 18: 311–324.

    CAS  Google Scholar 

  258. Esiri M, Wilcock GK. Cerebral amyloid angiopathy in dementia and old age. J Neurol Neurosurg Psychiatry 1986; 49: 1221–1226.

    Article  PubMed  CAS  Google Scholar 

  259. Simchowitz T. Histologische Studien uber die senile demenz. In: Nissl F, Alzheimer A, eds. Histologische und Histopathologische Arbeiten. Jena: Gustav Fischer, 1911: 267–444.

    Google Scholar 

  260. Tomlinson BE, Kitchener D. Granulovacuolar degeneration of hippocampal pyramidal cells. J Pathol 1971; 106: 165–185.

    Article  Google Scholar 

  261. Ball MJ. Topographic distribution of neurofibrillary tangles and granulovacuolar degeneration in the hippocampal cortex of aging and demented patients. A quantitative study. Acta Neuropathol 1978; 42: 73–80.

    Article  PubMed  CAS  Google Scholar 

  262. Ball MJ, Lo P. Granulovacuolar degeneration in the aging brain and in dementia. J Neuropathol Exp Neurol 1977; 36: 474–487.

    Article  PubMed  CAS  Google Scholar 

  263. Xu M, Shibayama H, Kobayashi H et al. Granuolovacuolar degeneration in the hippocampal cortex of aging and demented patients-a quantitative study. Acta Neuropathol 1992; 85: 1–9.

    Article  PubMed  CAS  Google Scholar 

  264. Woodward JS. Clinicopathological significance of granulovacuolar degeneration in Alzheimer’s disease. J Neuropathol Exp Neurol 1962; 21: 85–91.

    Article  Google Scholar 

  265. Gibson PH, Tomlinson BE. Numbers of Hirano bodies in the hippocampus of normal and demented people with Alzheimer’s disease. J Neurol Sci 1977; 33: 199–206.

    Article  PubMed  CAS  Google Scholar 

  266. Ogata J, Budzilovitch GN, Cravioto H. A study of rod-like structures (Hirano bodies) in 240 normal and pathological brains. Acta Neuropathol 1972; 21: 61–67.

    Article  PubMed  CAS  Google Scholar 

  267. Berk ML, Finkelstein JA. An autoradiographie determination of the afferent projections of the suprachiasmatic nucleus of the hypothalamus. Brain Res 1981; 226: 1–13.

    Article  PubMed  CAS  Google Scholar 

  268. Goudsmit E, Hopman MA, Fliers E et al. The supraoptic and paraventricular nuclei of the human hypothalamus in relation to sex, age and Alzheimer’s disease. Neurobiol Aging 1990; 11: 529–536.

    Article  PubMed  CAS  Google Scholar 

  269. Rudelli RD, Ambler MW, Wisniewski HM. Morphology and distribution of Alzheimer neuritic (senile) and amyloid plaques in striatum and diencephalon. Acta Neuropathol 1984; 64: 273–281.

    Article  PubMed  CAS  Google Scholar 

  270. Simpson J, Yates CM, Watts AG et al. Congo Red birefringent structures in the hypothalamus in senile dementia of the Alzheimer type. Neuropath Appl Neurobiol 1988; 14: 381–393.

    Article  CAS  Google Scholar 

  271. McDuff T, Sumi SM. Subcortical degeneration in Alzheimer’s disease. Neurology 1985; 35: 123–126.

    Article  PubMed  CAS  Google Scholar 

  272. Saper CB, German DC. Hypothalamic pathology in Alzheimer’s disease. Neurosci Lett 1987; 74: 364–370.

    Article  PubMed  CAS  Google Scholar 

  273. Mann DMA. The pathological association between Down syndrome and Alzheimer disease. Mech Aging Dev 1988; 43: 99–136.

    Article  PubMed  CAS  Google Scholar 

  274. Mann DMA. Alzheimer’s disease and Down’s syndrome. Histopath 1988; 13: 125–138.

    Article  CAS  Google Scholar 

  275. Mann DMA, Esiri MM. Regional acquisition of plaques and tangles in Down’s syndrome patients under 50 years of age. J Neurol Sci 1989; 89: 169–179.

    Article  PubMed  CAS  Google Scholar 

  276. Allsop D, Haga S-I, Haga C et al. Early senile plaques in Down’s syndrome brains show a clear relationship with cell bodies of neurones. Neuropath Appl Neurobiol 1989; 15: 531–542.

    Article  CAS  Google Scholar 

  277. Rumble B, Retallack R, Hilbich C et al. Amyloid (A4) protein and its precursor in Down’s syndrome and Alzheimer’s disease. N Engl J Med 1989; 320: 1446–1452.

    Article  Google Scholar 

  278. Lemere CA, Blusztajn JK, Yamaguchi H et al. Sequence of deposition of heterogeneous amyloid β-peptides and APO E in Down syndrome: Implications for initial events in amyloid plaque formation. Neurobiol Dis 1996; 3: 16–32.

    Article  PubMed  CAS  Google Scholar 

  279. Royston MC, Kodical NS, Mann DMA et al. Quantitative analysis of β-amyloid deposition in Down’s syndrome using computerized image analysis. Neurodegeneration 1994; 3: 43–51.

    Google Scholar 

  280. Mann DMA, Iwatsubo T. Diffuse plaques in the cerebellum and corpus striatum in Down’s syndrome contain amyloid β protein (Aβ) only in the form of Aβ42(43). Neurodegeneration 1996; 5: 115–120.

    Article  PubMed  CAS  Google Scholar 

  281. Kida E, Wisniewski KE, Wisniewski HM. Early amyloid-β deposits show different immunoreactivity to the amino-and carboxy-terminal regions of β-peptide in both Alzheimer’s disease and Down’s syndrome brain. Neurosci Lett 1995; 193: 1–4.

    Article  Google Scholar 

  282. Motte J, Williams RS. Age-related changes in the density and morphology of plaques and neurofibrillary tangles in Down’s syndrome brains. Acta Neuropathol 1989; 77: 535–546.

    Article  PubMed  CAS  Google Scholar 

  283. Mann DMA, Brown AMT, Prinja D et al. An analysis of the morphology of senile plaques in Down’s syndrome patients of different ages using immunocytochemical and lectin histochemical methods. Neuropath Appl Neurobiol 1989; 15: 317–329.

    Article  CAS  Google Scholar 

  284. Mann DMA, Iwatsubo T, Fukumoto H et al. Microglial cells and amyloid β protein (Aβ) deposition; association with Aβ40 containing plaques. Acta Neuropath 1995; 90: 472–477.

    Article  PubMed  CAS  Google Scholar 

  285. Wisniewski HM, Rabe A. Discrepancy between Alzheimer type neuropathology and dementia in persons with Down’s syndrome. Ann NY Acad Sci 1986; 477: 247–259.

    Article  PubMed  CAS  Google Scholar 

  286. Oliver C, Holland AJ. Down’s syndrome and Alzheimer’s disease: a review. Psychol Med 1986; 16: 307–322.

    Article  PubMed  CAS  Google Scholar 

  287. Mann DMA, Yates PO, Marcyniuk B et al. Loss of nerve cells from cortical and subcortical areas in Down’s syndrome patients at middle age: quantitative comparisons with younger Down’s patients and patients with Alzheimer’s disease. J Neurol Sci 1987; 80: 79–89.

    Article  PubMed  CAS  Google Scholar 

  288. Iwatsubo T, Mann DMA, Odaka A et al. Amyloid β protein (Aβ) deposition: Aβ42(43) precedes Aβ40 in Down syndrome. Ann Neurol 1995; 37: 294–299.

    Article  PubMed  CAS  Google Scholar 

  289. Davies CA, Mann DMA. Co-localization of apolipoprotein E and amyloid β protein in Down’s syndrome. Ann Neurol 1996; (in press):.

    Google Scholar 

  290. Snow AD, Mar H, Nochlin D et al. Early accumulation of heparan sulphate in neurones and in the β amyloid protein containing lesions of Alzheimer’s disease and Down’s syndrome. Am J Pathol 1990; 137: 1253–1270.

    PubMed  CAS  Google Scholar 

  291. Kalaria RN, Perry G. Amyloid P component and other acute phase proteins associated with cerebellar Aβdeposits in Alzheimer’s disease. Brain Res 1993; 631: 151–155.

    Article  PubMed  CAS  Google Scholar 

  292. Snow AD, Seikiguchi RT, Nochlin D et al. Heparan sulphate proteoglycan in diffuse plaques of hippocampus but not of cerebellum in Alzheimer’s disease brain. Am J Pathol 1994; 144: 337–347.

    PubMed  CAS  Google Scholar 

  293. Teller JK, Russo C, de Busk LM et al. Presence of soluble amyloid β peptide precedes amyloid plaque formation in Down’s syndrome. Nature Medicine 1996; 2: 93–95.

    Article  PubMed  CAS  Google Scholar 

  294. Fukumoto H, Asami-Odaka A, Suzuki N et al. Amyloid β protein (Aβ) deposition in normal aging has the same characteristics as that in Alzheimer’s disease: predominance of Aβ42(43) and association of Aβ40 with cored plaques. Am J Pathol 1996; 148: 259–265.

    PubMed  CAS  Google Scholar 

  295. Byrne EJ, Lennox G, Godwin-Austen RB et al. Dementia associated with cortical Lewy bodies: proposed clinical diagnostic criteria. Dementia 1991; 2: 283–284.

    Google Scholar 

  296. McKeith IG, Perry RH, Fairbairn AF et al. Clinical diagnostic criteria for Lewy body dementia. Dementia 1992; 3: 251–252.

    Google Scholar 

  297. Dickson DW, Crystal H, Mattiace LA et al. Diffuse Lewy body disease: light and electron microscopic immunocytochemistry of senile plaques. Acta Neuropathol 1989; 78: 572–584.

    Article  PubMed  CAS  Google Scholar 

  298. Dickson DW, Ruan D, Crystal H et al. Hippocampal degeneration differentiates diffuse Lewy body disease (DLDB) from Alzheimer’s disease: light and electron microscopic immunocytochemistry of CA2–3 neurites specific to DLDB. Neurology 1991; 41: 1402–1409.

    Article  PubMed  CAS  Google Scholar 

  299. Gentleman SM, Williams B, Royston MC et al. Quantification of β/A4 protein deposition in the medial temporal lobe: a comparison of Alzheimer’s disease and senile dementia of the Lewy body type. Neurosci Lett 1992; 142: 9–12.

    Article  PubMed  CAS  Google Scholar 

  300. Ince P, Irving D, MacArthur F et al. Quantitative neuropathological study of Alzheimer-type pathology in the hippocampus: comparison of senile dementia of Alzheimer type, senile dementia of Lewy body type, Parkinson’s disease and non-demented elderly control patients. J Neurol Sci 1991; 106: 142–152.

    Article  PubMed  CAS  Google Scholar 

  301. Perry RH, Irving D, Blessed G et al. Senile dementia of Lewy body type. A clinically and neuropathologically distinct form of Lewy body dementia in the elderly. J Neurol Sci 1990; 95: 119–139.

    Article  PubMed  CAS  Google Scholar 

  302. Hansen L, Salmon D, Galasko D et al. The Lewy body variant of Alzheimer’s disease: A clinical and pathological entity. Neurology 1990; 40: 1–8.

    Article  PubMed  CAS  Google Scholar 

  303. Lippa CF, Smith TW, Swearer JM. Alzheimer’s disease and Lewy body disease: A comparative clinicopathological study. Ann Neurol 1994; 35: 81–88.

    Article  PubMed  CAS  Google Scholar 

  304. Mann DMA, Snowden JS. The topographic distribution of brain atrophy in cortical Lewy body disease: comparison with Alzheimer’s disease. Acta Neuropathol 1995; 89: 178–183.

    Article  PubMed  CAS  Google Scholar 

  305. Benjamin R, Leake A, Edwardson JA et al. Apolipoprotein E genes in Lewy body and Parkinson’s disease. Lancet 1994; 343: 1565.

    Article  PubMed  CAS  Google Scholar 

  306. Pickering-Brown S, Mann DMA, Bourke JP et al. Apolipoprotein E4 and Alzheimer’s disease pathology in Lewy body disease and in other β-amyloid forming diseases. Lancet 1994; 343: 1155.

    Article  PubMed  CAS  Google Scholar 

  307. Galasko D, Saitoh T, Xia Y et al. The apolipoprotein E allele E4 is over-represented in patients with the Lewy body variant of Alzheimer’s disease. Neurology 1994; 44: 1950–1951.

    Article  PubMed  CAS  Google Scholar 

  308. Luyendijk W, Bots TAM, Vegtner-van der Vlis M et al. Hereditary cerebral haemorrhage caused by cortical amyloid angiopathy. J Neurol Sci 1988; 85: 267–280.

    Article  PubMed  CAS  Google Scholar 

  309. Van Duinen SG, Castano EM, Prelli F et al. Hereditary cerebral haemorrhage with amyloidosis in patients of the Dutch origin is related to Alzheimer disease. Proc Natl Acad Sci (USA) 1987; 84: 5991–5994.

    Article  Google Scholar 

  310. Maat-Schieman MLC, Van Duinen SG, Haan J et al. Morphology of cerebral plaque-like lesions in hereditary cerebral haemorrhage with amyloidosis (Dutch). Acta Neuropathol 1992; 84: 674–679.

    Article  PubMed  CAS  Google Scholar 

  311. Maat-Schieman MLC, Rozemuller AJ, Van Duinen SG et al. Microglia in diffuse plaques in hereditary cerebral haemorrhage with amyloidosis (Dutch). An immunohistochemical study. J Neuropathol Exp Neurol 1994; 53: 483–491.

    Article  CAS  Google Scholar 

  312. Maat-Schieman MLC, Radder CM, Van Duinen SG et al. Hereditary cerebral haemorrhage with amyloidosis (Dutch): a model for argyrophilic plaque formation without neurofibrillary pathology. Acta Neuropathol 1994; 88: 371–378.

    Article  PubMed  CAS  Google Scholar 

  313. Rozemuller JM, Bots TAM, Roos RAC et al. Acute phase proteins but not activated microglial cells are present in parenchymal β/A4 deposits in the brains of patients with hereditary cerebral haemorrhage with amyloidosis-Dutch type. Neurosci Lett 1992; 140: 137–140.

    Article  PubMed  CAS  Google Scholar 

  314. Mann DMA, Iwatsubo T, Ihara Y et al. Predominant deposition of Aβ42(43) in plaques in cases of Alzheimer’s disease and hereditary cerebral haemorrhage associated with mutations in the amyloid precursor protein gene. Am J Pathol 1996; 148: 1257–1266.

    PubMed  CAS  Google Scholar 

  315. Wisniewski T, Frangione B. Molecular biology of Alzheimer’s amyloid-Dutch variant, Mol. Neurobiol 1992; 6: 75–86.

    CAS  Google Scholar 

  316. Levy E, Carman MD, Fernandez-Madrid IJ et al. Mutation of the Alzheimer’s disease amyloid gene in hereditary cerebral haemorrhage, Dutch type. Science 1990; 248: 1124–1126.

    Article  PubMed  CAS  Google Scholar 

  317. Van Broeckhoven C, Haan J, Bakker E et al. Amyloid β protein precursor gene and hereditary cerebral hemorrhage with amyloidosis (Dutch). Science 1990; 248: 1120–1128.

    Article  PubMed  Google Scholar 

  318. Clements A, Walsh DM, Williams CH et al. Effects of the mutations Glu22 to Gln and Ala21 to Gly on the aggregation of a synthetic fragment of the Alzheimer’s amyloid β/A4 peptide. Neurosci Lett 1993; 161: 17–20.

    Article  PubMed  CAS  Google Scholar 

  319. Fabian H, Szendrei GI, Mantsch HH et al. Comparative analysis of human and Dutchtype Alzheimer β-amyloid peptides by infrared spectroscopy and circular dichroism. Biochem Biophys Res Commun 1993; 191: 232–239.

    Article  PubMed  CAS  Google Scholar 

  320. Wisniewski T, Ghiso J, Frangione B. Peptides homologous to the amyloid protein of Alzheimer’s disease containing a glutamine for glutamic acid substitution have accelerated amyloid fibril formation. Biochem Biophys Res Commun 1991; 179: 1247–1254.

    Article  PubMed  CAS  Google Scholar 

  321. Hendriks L, Van Duijn CM, Cras P et al. Presenile dementia and cerebral haemorrhage linked to a mutation at codon 692 of the β-amyloid precursor protein gene. Nature Genet 1992; 1: 218–221.

    Article  PubMed  CAS  Google Scholar 

  322. Mortimer JA, French LR, Hutton JT et al. Head injury as a risk factor for Alzheimer’s disease. Neurology 1985; 35: 264–267.

    Article  PubMed  CAS  Google Scholar 

  323. Mayeux R, Ottman R, Tang M-X et al. Genetic susceptibility and head injury as risk factors for Alzheimer’s disease among community-dwelling elderly persons and their first-degree relatives. Ann Neurol 1993; 33: 494–501.

    Article  PubMed  CAS  Google Scholar 

  324. Corsellis JAN, Brierley JB. Observations on the pathology of insidious dementia following head injury. J Ment Sci 1959; 105: 714–720.

    PubMed  CAS  Google Scholar 

  325. Rudelli R, Strom JO, Welch PT et al. Posttraumatic premature Alzheimer’s disease: Neuropathologic findings and pathogenetic considerations. Arch Neurol 1982; 39: 570–575.

    Article  PubMed  CAS  Google Scholar 

  326. Clinton J, Ambler MW, Roberts GW. Post-traumatic Alzheimer’s disease: preponderance of a single plaque type. Neuropath Appl Neurobiol 1991; 17: 69–74.

    Article  CAS  Google Scholar 

  327. Roberts GW, Gentleman SH, Lynch A et al. β/A4 amyloid protein deposition in the brain after head injury. Lancet 1991; 338: 1422–1423.

    Article  PubMed  CAS  Google Scholar 

  328. Nicoll JAR, Roberts GW, Graham DI. Apolipoprotein E e4 allele is associated with deposition of amyloid β-protein following head injury. Nature Medicine 1995; 1: 135–137.

    Article  PubMed  CAS  Google Scholar 

  329. Graham DI, Gentleman SM, Lynch A et al. Distribution of β-amyloid protein in the brain following severe head injury. Neuropath Appl Neurobiol 1995; 21: 27–34.

    Article  CAS  Google Scholar 

  330. Gentleman SM, Nash MJ, Sweeting CJ et al. β-amyloid precursor protein (β-APP) as a marker for axonal injury after head injury. Neurosci Lett 1993; 160: 139–144.

    Article  Google Scholar 

  331. Martland HS. Punch drunk. J Am Med Ass 1928; 91: 1103–1107.

    Article  Google Scholar 

  332. Courville CB. Punch drunk. Bull Los Angeles Neurol Soc 1962; 27: 160–168.

    PubMed  CAS  Google Scholar 

  333. Roberts AH. Brain damage in boxers. London, Pitman Medical Scientific Publication, 1969.

    Google Scholar 

  334. Guterman A, Smith RW. Neurological sequelae of boxing. Sports Med 1987; 4: 194–210.

    Article  PubMed  CAS  Google Scholar 

  335. Roberts GW, Whitwell HL, Acland PR et al. Dementia in a punch-drunk wife. Lancet 1990; i: 918–919.

    Article  Google Scholar 

  336. Roberts GW, Allsop D, Bruton C. The occult aftermath of boxing. J Neurol Neurosurg Psychiatry 1990; 53: 373–378.

    Article  PubMed  CAS  Google Scholar 

  337. Tokuda T, Ikeda S, Yanagisawa N et al. Re-examination of ex-boxers’ brains using immunohistochemistry with antibodies to amyloid β-protein and tau protein. Acta Neuropathol 1991; 82: 280–285.

    Article  PubMed  CAS  Google Scholar 

  338. Roberts GW. Immunocytochemistry of neurofibrillary tangles in dementia pugilistica and Alzheimer’s disease: evidence for common genesis. Lancet 1988; ii: 1456–1458.

    Article  Google Scholar 

  339. Wisniewski KE, Jervis GA, Moretz RC et al. Alzheimer neurofibrillary tangles in diseases other than senile and presenile dementia. Ann Neurol 1979; 7: 462–465.

    Google Scholar 

  340. Dale GE, Leigh PN, Luthert P et al. Neurofibrillary tangles in dementia pugilistica are ubiquitinated. Psychiat 1991; 54: 116–118.

    CAS  Google Scholar 

  341. Corsellis JAN, Bruton CJ, Freeman-Browne D. The aftermath of boxing. Psychol Med 1973; 3: 270–303.

    Article  PubMed  CAS  Google Scholar 

  342. Hof PR, Bouras C, Buee L et al. Differential distribution of neurofibrillary tangles in the cerebral cortex of dementia pugilistica and Alzheimer’s disease cases. Acta Neuropathol 1992; 85: 23–30.

    Article  PubMed  CAS  Google Scholar 

  343. Geddes JF, Vowles GH, Robinson SFD et al. Neurofibrillary tangles, but not Alzheimer-type pathology, in a young boxer. Neuropath Appl Neurobiol 1996; 22: 12–16.

    Article  CAS  Google Scholar 

  344. Candy JM, McArthur FK, Oakley AE et al. Aluminum accumulation in relation to senile plaque and neurofibrillary tangle formation in the brains of patients with renal failure. J Neurol Sci 1992; 107: 210–218.

    Article  PubMed  CAS  Google Scholar 

  345. Harrington CR, Wischik CM, McArthur FK et al. Alzheimer’s disease-like changes in tau protein processing: association with aluminum accumulation in brains of renal dialysis patients. Lancet 1994; 343: 993–997.

    Article  PubMed  CAS  Google Scholar 

  346. Burks JS, Alfrey AC, Huddlestone J et al. A fatal encephalopathy in chronic haemodialysis patients. Lancet 1976; i: 764–768.

    Article  Google Scholar 

  347. Perl DP, Brody AR. Alzheimer’s disease: x-ray spectrometric evidence of aluminum accumulation in neurofibrillary tangle-bearing neurons. Science 1980; 208: 297–299.

    Article  Google Scholar 

  348. Candy JM, Oakley AE, Klinowski J et al. Aluminosilicates and senile plaque formation in Alzheimer’s disease. Lancet 1986; 1: 354–357.

    Article  PubMed  CAS  Google Scholar 

  349. Chafi AH, Hauw J-J, Rancurel G et al. Absence of aluminum in Alzheimer’s disease brain tissue: electron microprobe and ion microprobe studies. Neurosci Lett 1991; 123: 61–64.

    Article  PubMed  CAS  Google Scholar 

  350. Landsberg JP, McDonald B, Watt JF. Absence of aluminum in neuritic plaque cores in Alzheimer’s disease. Nature 1992; 360: 65–68.

    Article  PubMed  CAS  Google Scholar 

  351. Masters CL, Simms G, Weinman NA et al. Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci (USA) 1985; 82: 4245–4249.

    Article  CAS  Google Scholar 

  352. Tabaton M, Mandybur TI, Perry G et al. The widespread alteration of neurites in Alzheimer’s disease may be unrelated to amyloid deposition. Ann Neurol 1989; 26: 771–778.

    Article  PubMed  CAS  Google Scholar 

  353. Mandybur TI, Nagpaul AS, Pappas Z et al. Alzheimer neurofibrillary change in subacute sclerosing panencephalitis. Ann Neurol 1977; 1: 103–107.

    Article  PubMed  CAS  Google Scholar 

  354. Mandybur TI. The distribution of Alzheimer’s neurofibrillary tangles and gliosis in chronic subacute sclerosing panencephalitis. Acta Neuropathol 1990; 80: 307–310.

    Article  PubMed  CAS  Google Scholar 

  355. McQuaid S, Allen IV, McMahon J et al. Association of measles virus with neurofibrillary tangles in subacute sclerosing panencephalitis: a combined in situ hybridization and immunocytochemical investigation. Neuropath Appl Neurobiol 1994; 20: 103–110.

    Article  CAS  Google Scholar 

  356. Hirano A, Malamud N, Elizan TS et al. Amyotrophic lateral sclerosis and parkinsonism-dementia complex on Guam. Arch Neurol 1966; 2: 225–232.

    Google Scholar 

  357. Geddes JF, Hughes AJ, Lees AJ et al. Pathological overlap in cases of parkinsonism associated with neurofibrillary tangles. A study of postencephalic parkinsonism and comparison with progressive supranuclear palsy and Guamanian parkinsonismdementia complex. Brain 1993; 116: 281–302.

    Article  PubMed  Google Scholar 

  358. Buee L, Perez-Tur J, Leveugle B et al. Apolipoprotein E in Guamanian amyotrophic lateral sclerosis/parkinsonismdementia complex: genotype analysis and relationships to neuropathological changes. Acta Neuropathol 1996; (In press):.

    Google Scholar 

  359. Kiuchi A, Otsuka N, Namba Y et al. Presenile appearance of abundant neurofibrillary tangles without senile plaques in the brain in myotonic dystrophy. Acta Neuropathol 1991; 82: 1–5.

    Article  PubMed  CAS  Google Scholar 

  360. Giaccone G, Tagliavini L, Verga L et al. Neurofibrillary tangles of the Indiana kindred of Gerstmann-Straussler-Sheinker disease share antigenic determinants with those of Alzheimer’s disease. Brain Res 1990; 530: 325–329.

    Article  PubMed  CAS  Google Scholar 

  361. Namba Y, Kawatsu K, Izumi S et al. Neurofibrillary tangles and senile plaques in brain of elderly leprosy patients. Lancet 1992; 340: 978.

    Article  PubMed  CAS  Google Scholar 

  362. Cullen KM, Halliday GM. Neurofibrillary tangles in chronic alcoholics. Neuropath Appl Neurobiol 1995; 21: 312–318.

    Article  CAS  Google Scholar 

  363. Joachim CL, Mori H, Selkoe DJ. Amyloid β-protein deposition in tissues other than brain in Alzheimer’s disease. Nature 1989; 341: 226–230.

    Article  PubMed  CAS  Google Scholar 

  364. Ikeda M, Shoji M, Yamaguchi H et al. Diagnostic significance of skin immunolabelling with antibody against native cerebral amyloid in Alzheimer’s disease. Neurosci Lett 1993; 150: 159–161.

    Article  PubMed  CAS  Google Scholar 

  365. Soininen H, Syrjanen S, Heinonen O et al. Amyloid β-protein deposition in skin of patients with dementia. Lancet 1992; 339: 245.

    Article  PubMed  CAS  Google Scholar 

  366. Tabaton M, Cammarata S, Mancardi GL et al. Abnormal tau-reactive filaments in olfactory mucosa in biopsy specimens of patients with probable Alzheimer’s disease. Neurology 1991; 41: 391–394.

    Article  PubMed  CAS  Google Scholar 

  367. Talamo BR, Rudel RA, Kosik KS et al. Pathological changes in olfactory neurons in patients with Alzheimer’s disease. Nature 1989; 337: 736–739.

    Article  PubMed  CAS  Google Scholar 

  368. Johnston JA, Cowburn RF, Norgren S et al. Increased β amyloid release and levels of amyloid precursor protein (APP) in fibroblast cell lines obtained from family members with the Swedish APP670.671 mutation. FEBS Lett 1994; 354: 274–278.

    Article  PubMed  CAS  Google Scholar 

  369. Scheuner D, Eckman C, Jensen M et al. The amyloid β protein deposited in the senile plaques of Alzheimer’s disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer’s disease. Nature Medicine 1996; 2: 864–870.

    Article  PubMed  CAS  Google Scholar 

  370. Bush AI, Martins RN, Rumble B et al. The amyloid precursor protein of Alzheimer’s disease is released by human platelets. J Biol Chem 1990; 265: 15977–15983.

    PubMed  CAS  Google Scholar 

  371. Smith RP, Higuchi DA, Broze GJ. Platelet coagulation factor X1a-inhibitor, a form of Alzheimer’s amyloid precursor protein. Science 1990; 248: 1126–1128.

    Article  PubMed  CAS  Google Scholar 

  372. Beer J, Masters CL, Beyreuther K. Cells from peripheral tissues that exhibit high APP expression are characterized by their high membrane fusion activity. Neurodegeneration 1995; 4: 51–59.

    Article  PubMed  CAS  Google Scholar 

  373. Li JC, Kaminskas E. Deficient repair of DNA lesions in Alzheimer’s disease fibroblasts. Biochem Biophys Res Commun 1985; 129: 733–738.

    Article  PubMed  CAS  Google Scholar 

  374. Bartha E, Szelenyi J, Szilagyi K. Altered lymphocyte acetylcholinesterase activity in patients with senile dementia. Neurosci Lett 1987; 79: 190–194.

    Article  PubMed  CAS  Google Scholar 

  375. Kessler JA. Deficiency of a cholinergic differentiating factor in fibroblasts of patients with Alzheimer’s disease. Ann Neurol 1987; 21: 95–98.

    Article  PubMed  CAS  Google Scholar 

  376. Peterson C, Ratan R, Shelanski M et al. Cytosolic free calcium and cell spreading decrease in fibroblasts from aged and Alzheimer donors. Proc Natl Acad Sci (USA) 1986; 83: 7999–8001.

    Article  CAS  Google Scholar 

  377. Ueda K, Cole G, Sundsmo M et al. Decreased adhesiveness of Alzheimer’s disease fibroblasts: Is amyloid β-protein precursor involved? Ann Neurol 1989; 25: 246–251.

    Article  PubMed  CAS  Google Scholar 

  378. Tesco G, Latorica S, Piersanti P et al. Free radical injury in skin cultured fibroblasts from Alzheimer’s disease patients. Ann NY Acad Sci 1992; 673: 149–153.

    Article  PubMed  CAS  Google Scholar 

  379. Tesco G, Vergelli M, Amaducci L et al. Growth properties of familial Alzheimer skin fibroblasts during in vitro aging. Exp Gerontol 1993; 28: 51–58.

    Article  PubMed  CAS  Google Scholar 

  380. Zubenko GS, Cohen BM, Crowdon J et al. Platelet membrane fluidity in Alzheimer’s disease. Lancet 1984; ii: 235.

    Article  Google Scholar 

  381. Zubenko GS, Cohen BM, Reynolds CF et al. Platelet membrane fluidity in Alzheimer’s disease and major depression. Am J Psychiatry 1987; 144: 860–868.

    PubMed  CAS  Google Scholar 

  382. Hicks N, Brammer MJ, Hymas N et al. Platelet membrane properties in Alzheimer’s and multi infarct dementias. Alzheimer’s Disease Assoc Disord 1987; 1: 90–97.

    Article  CAS  Google Scholar 

  383. Piletz JE, Sarasua P, Whitehouse P et al. Intracellular membranes are more fluid in platelets of Alzheimer’s disease patients. Neurobiol Aging 1991; 12: 401–406.

    Article  PubMed  CAS  Google Scholar 

  384. Duguid JR, De La Paz R, DeGroot J. Magnetic resonance imaging of the midbrain in Parkinson’s disease. Ann Neurol 1986; 20: 744–747.

    Article  PubMed  CAS  Google Scholar 

  385. Drayer BP, Olanow CW, Burger P et al. Parkinson plus syndrome: Diagnosis using high field MR imaging of the brain. Radiology 1986; 159: 493–498.

    PubMed  CAS  Google Scholar 

  386. Olanow CW. An introduction to the free radical hypothesis in Parkinson’s disease. Ann Neurol 1992; 32: 52–59.

    Article  Google Scholar 

  387. Stern MB, Braffman BH, Skolnick BE et al. Magnetic resonance imaging in Parkinson’s disease and parkinsonian syndromes. Neurology 1989; 39: 1524–1526.

    Article  PubMed  CAS  Google Scholar 

  388. Huber SJ, Chakeres DW, Paulson GW et al. Magnetic resonance imaging in Parkinson’s disease. Arch Neurol 1990; 47: 735–737.

    Article  PubMed  CAS  Google Scholar 

  389. Earle KM. Studies in Parkinson’s disease including x-ray fluorescent spectroscopy of formalin fixed brain tissue. J Neuropathol Exp Neurol 1968; 27: 1–14.

    Article  PubMed  CAS  Google Scholar 

  390. Dexter DT, Wells FR, Lees AJ et al. Increased nigral iron content and alterations in other metal iron occurring in brain in Parkinson’s disease. J Neurochem 1989; 52: 1830–1836.

    Article  PubMed  CAS  Google Scholar 

  391. Sofic E, Riederer P, Heinsen H et al. Increased iron (III) and total iron content in post mortem substantia nigra of parkinsonian brain. J Neural Transm 1988; 74: 199–205.

    Article  PubMed  CAS  Google Scholar 

  392. Hirsch EC, Brandel JP, Galle P et al. Iron and aluminum increase in the substantia nigra of patients with Parkinson’s disease: An X-ray microanalysis. J Neurochem 1991; 56: 446–451.

    Article  PubMed  CAS  Google Scholar 

  393. Good PF, Olanow CW, Perl DP. Neuromelanin-containing neurons of the substantia nigra accumulate iron and aluminum in Parkinson’s disease: A LAMMA study. Brain Res 1992; 593: 343–346.

    Article  PubMed  CAS  Google Scholar 

  394. Morris CM, Edwardson JA. Iron histochemistry of the substantia nigra in Parkinson’s disease. Neurodegeneration 1994; 3: 277–282.

    PubMed  CAS  Google Scholar 

  395. Griffiths PD, Crossman AR. Distribution of iron in the basal ganglia and neocortex in postmortem tissue in Parkinson’s disease and Alzheimer’s disease. Dementia 1993; 4: 61–65.

    PubMed  CAS  Google Scholar 

  396. Nahmias C, Garnett ES, Firnau G et al. Striatal dopamine distribution in parkinsonian patients during life. J Neurol Sci 1985; 69: 223–230.

    Article  PubMed  CAS  Google Scholar 

  397. Martin WRW, Stoessl AJ, Adam MJ et al. Positron emission tomography in Parkinson’s disease: Glucose and DOPA metabolism. Adv Neurol 1986; 45: 95–98.

    Google Scholar 

  398. Brooks DJ, Ibanez V, Sawle GV et al. Differing patterns of striatal 18F-dopa uptake in Parkinson’s disease, mutliple system atrophy, and progressive supranuclear palsy. Ann Neurol 1990; 28: 547–555.

    Article  PubMed  CAS  Google Scholar 

  399. Bhatt M, Snow BJ, Martin WRW et al. Positron emission tomography suggests that the rate of progression of idiopathic parkinsonism is slow. Ann Neurol 1991; 29: 673–677.

    Article  PubMed  CAS  Google Scholar 

  400. Kuhl DE, Metter EJ, Riege WH. Patterns of local cerebral glucose utilization determined in Parkinson’s disease by the [18F] fluorodeoxyglucose method. Ann Neurol 1984; 15: 419–424.

    Article  PubMed  CAS  Google Scholar 

  401. Peppard RF, Martin WRW, Guttman M et al. Cerebral glucose metabolism in Parkinson’s disease and the PD complex of Guam. In: Crossman A, Sambrook M, eds. Neural Mechanisms in Disorders of Movement. London: John Libbey, 1989: 445–452.

    Google Scholar 

  402. Gibb WRG, Lees AJ. The relevance of the Lewy body to the pathogenesis of idiopathic Parkinson’s disease. J. Neurol Neurosurg Psychiat 1988; 51: 745–752.

    Article  PubMed  CAS  Google Scholar 

  403. Gibb WRG, Lees AJ. Anatomy, pigmentation, ventral and dorsal subpopulations of the substantia nigra, and differential cell death in Parkinson’s disease. J Neurol Neurosurg Psychiatry 1991; 54: 388–396.

    Article  PubMed  CAS  Google Scholar 

  404. Gibb WRG. Idiopathic Parkinson’s disease and the Lewy body disorders. Neuropath Appl Neurobiol 1986; 12: 223–234.

    Article  CAS  Google Scholar 

  405. Fearnley JM, Lees AJ. Aging and Parkinson’s disease: Substantia nigra regional selectivity. Brain 1991; 114: 2283–2301.

    Article  PubMed  Google Scholar 

  406. Hirsch E, Graybiel AM, Agid YA. Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson’s disease. Nature 1988; 334: 345–348.

    Article  PubMed  CAS  Google Scholar 

  407. Paulus W, Jellinger K. The neuropathologic basis of different clinical subgroups of Parkinson’s disease. J Neuropathol Exp Neurol 1991; 50: 743–755.

    Article  PubMed  CAS  Google Scholar 

  408. Forno LS, Norville RL. Ultrastructure of Lewy bodies in the stellate ganglion. Acta Neuropathol 1978; 34: 183–197.

    Article  Google Scholar 

  409. Gaspar P, Gray F. Dementia in idiopathic Parkinson’s disease: A neuropathological study of 32 cases. Acta Neuropathol 1984; 64: 43–52.

    Article  PubMed  CAS  Google Scholar 

  410. Jellinger K. Neuropathological substrates of Alzheimer’s disease and Parkinson’s disease. J Neurol Transm Suppl 1987; 24: 109–129.

    CAS  Google Scholar 

  411. Jellinger K. Quantitative changes in some subcortical nuclei in aging, Alzheimer’s disease and Parkinson’s disease. Neurobiol Aging 1987; 8: 556–561.

    Article  PubMed  CAS  Google Scholar 

  412. Jellinger K. Pathology of Parkinson’s disease. Changes other than the nigrostriatal pathway. Molec Chem Neuropathol 1991; 14: 153–197.

    Article  CAS  Google Scholar 

  413. Greenfield JG, Bosanquet FD. The brain stem lesions in Parkinsonism. J Neurol Neurosurg Psychiatry 1953; 16: 213–226.

    Article  PubMed  CAS  Google Scholar 

  414. Mann DMA, Yates PO. Pathological basis for neurotransmitter changes in Parkinson’s disease. Neuropath Appl Neurobiol 1983; 9: 3–19.

    Article  CAS  Google Scholar 

  415. Whitehouse PJ, Hedreen JC, White CL et al. Basal forebrain neurons in the dementia of Parkinson’s disease. Ann Neurol 1983; 13: 243–248.

    Article  PubMed  CAS  Google Scholar 

  416. Ohama E, Ikuta F. Parkinson’s disease: Distribution of Lewy bodies and monoamine neuron system. Acta Neuropathol 1976; 34: 311.

    Article  PubMed  CAS  Google Scholar 

  417. Braak H, Braak E, Yilmazer D et al. Amygdala pathology in Parkinson’s disease. Acta Neuropathol 1994; 88: 493–500.

    Article  PubMed  CAS  Google Scholar 

  418. Braak H, Braak E, Yilmazer D de Vos RAI et al. Nigral and extranigral lesions in Parkinson’s disease. J Neural Transm 1995; 46: 15–31.

    CAS  Google Scholar 

  419. Braak H, Braak E. Nuclear configuration and neuronal types of the nucleus niger in the brain of the human adult. Hum Neurobiol 1986; 5: 71–82.

    PubMed  CAS  Google Scholar 

  420. Matzuk MM, Saper CB. Preservation of hypothalamic dopaminergic neurons in Parkinson’s disease. Ann Neurol 1985; 18: 552–555.

    Article  PubMed  CAS  Google Scholar 

  421. Agid Y, Ruberg M, Javoy-Agid F et al. Are dopaminergic neurons selectively vulnerable to Parkinson’s disease? Adv Neurol 1993; 60: 148–164.

    PubMed  CAS  Google Scholar 

  422. Forno LS, Murphy GM, Eng LF. Immunocytochemical study of Lewy bodies in sympathetic ganglia. Neurodegeneration 1992; 1: 135–144.

    Google Scholar 

  423. Oyanagi K, Wakabayashi K, Ohama E et al. Lewy bodies in the lower sacral parasympathetic neurons of a patient with Parkinson’s disease. Acta Neuropathol 1990; 80: 558–559.

    Article  PubMed  CAS  Google Scholar 

  424. Wakabayashi K, Takahashi H, Ohama E et al. Parkinson’s disease: an immunohistochemical study of Lewy body-containing neurons in the enteric nervous system. Acta Neuropathol 1990; 79: 581–583.

    Article  PubMed  CAS  Google Scholar 

  425. Bernheimer H, Birkmayer H, Hornykiewicz O et al. Brain dopamine and the syndromes of Parkinson and Huntington: Clinical, morphological and neurochemical correlations. J Neurol Sci 1973; 20: 415–455.

    Article  PubMed  CAS  Google Scholar 

  426. McGeer PL, Itagaki S, Akiyama H et al. Rate of cell death in Parkinsonism indicates active neuropathological process. Ann Neurol 1988; 24: 574–576.

    Article  PubMed  CAS  Google Scholar 

  427. German DC, Manaye KF, Smith WK et al. Mid brain dopaminergic cell loss in Parkinson’s disease: computer visualization. Ann Neurol 1989; 26: 607–614.

    Article  Google Scholar 

  428. Halliday GM, McRitchie DA, Cartwright H et al. Midbrain neuropathology in idiopathic Parkinson’s disease and diffuse Lewy body disease. J Clin Neurosci 1996; 3: 1–9.

    Article  Google Scholar 

  429. Ma SY, Collan Y, Roytta M et al. Cell counts in the substantia nigra: a comparison of single section counts and disector counts in patients with Parkinson’s disease and in controls. Neuropath Appl Neurobiol 1995; 21: 10–17.

    Article  CAS  Google Scholar 

  430. Foley JM, Baxter D. On the nature of pigment granules in the cells of the locus caeruleus and substantia nigra. J Neuropathol Exp Neurol 1958; 17: 586–598.

    Article  PubMed  CAS  Google Scholar 

  431. Bazelon M, Fenichel GM, Randall J. Studies on neuromelanin. I.A melanin system in the human adult brain stem. Neurology 1969; 17: 512–519.

    Article  Google Scholar 

  432. Mann DMA, Yates PO. Lipoprotein pigments: Their relationship to aging in the human nervous system. II-The melanin content of pigmented nerve cells. Brain 1974; 97: 489–498.

    Article  PubMed  CAS  Google Scholar 

  433. Mann DMA, Yates PO, Barton CM. Variations in melanin content with age in the human substantia nigra. Biochem Exp Biol 1977; 13: 137–139.

    PubMed  CAS  Google Scholar 

  434. Mann DMA, Yates PO. The pathogenesis of Parkinson’s disease. Arch Neurol 1982; 39: 545–549.

    Article  PubMed  CAS  Google Scholar 

  435. Graham DG, Tiffany SM, Bell WR. Auto-oxidation versus covalent binding of quinones as the mechanism of toxicity of dopamine, 6-hydroxydopamine and related compounds towards C1300 neuroblastoma cells in vitro. Molec Pharmacol 1978; 14: 644–653.

    CAS  Google Scholar 

  436. Mann DMA, Yates PO. The effects of aging on the pigmented nerve cells of the human locus caeruleus and substantia nigra. Acta Neuropathol 1979; 47: 93–97.

    Article  PubMed  CAS  Google Scholar 

  437. McGeer PL, McGeer EG, Suzuki JS. Aging and extrapyramidal function. Arch Neurol 1977; 34: 33–35.

    Article  PubMed  CAS  Google Scholar 

  438. Hirai S. Aging of the substantia nigra. Adv Neurol Sci 1968; 12: 845–849.

    CAS  Google Scholar 

  439. Langston JW, Forno LS. The hypothalamus in Parkinson’s disease. Ann Neurol 1978; 3: 129–133.

    Article  PubMed  CAS  Google Scholar 

  440. Manaye KF, Mclntire DD, Mann DMA et al. Locus coeruleus cell loss in the aging human brain: a non-random process. J Comp Neurol 1995; 358: 79–87.

    Article  PubMed  CAS  Google Scholar 

  441. Marcyniuk B, Mann DMA. The topography of nerve cell loss from the locus caeruleus in elderly persons. Neurobiol Aging 1989; 10: 5–9.

    Article  PubMed  CAS  Google Scholar 

  442. Marcyniuk B, Mann DMA, Yates PO. Topography of nerve cell loss from the locus caeruleus in middle aged persons with Down’s syndrome. J Neurol Sci 1988; 83: 15–24.

    Article  PubMed  CAS  Google Scholar 

  443. Forno LS, Alvord EC. The pathology of Parkinsonism. In: Recent Advances in Parkinson’s disease. Oxford: Blackwell Scientific Publications, 1971: 120–161.

    Google Scholar 

  444. Forno LS. Concentric hyaline intraneuronal inclusions of Lewy type in the brains of elderly persons (50 incidental cases); relationship to Parkinsonism. J Amer Geriat Soc 1969; 17: 557–575.

    PubMed  CAS  Google Scholar 

  445. Forno LS, Langston JW. Lewy bodies and aging: Relation to Alzheimer’s and Parkinson’s diseases. Neurodegeneration 1993; 2: 19–24.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mann, D.M.A. (1997). Pathological Changes in Neurodegenerative Disease. In: Sense and Senility: The Neuropathology of the Aged Human Brain. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6001-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6001-2_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7749-8

  • Online ISBN: 978-1-4615-6001-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics