Skip to main content
  • 86 Accesses

Abstract

Up to this point the discussion has focused on events in which the reading frame shifts between overlapping codons. However, shifts can occur in larger increments, up to as many as 50 nt. Such an event is termed a translational hop. Translational hopping was first observed in synthetic constructs made to test the sequence requirements of frameshifts in E. coli. Hopping occurred by re-pairing of tRNAs on cognate or near cognate codons shifted +2 to +6.39 All of these events were very inefficient, occurring with apparent efficiencies of only from 0.4 to 1%. More recently, extremely efficient translational hops have been identified in phage T4 gene 60, encoding topoisomerase,13,38 and in the trpR gene, encoding the E. coli trp repressor.3 Clearly, the sequences surrounding these sites must stimulate translational hopping in the same way that sequence contexts stimulate frameshifting. It is not immediately clear whether the distinction between translational frameshifts and translational hops has a functional significance, or if it is just a semantic, that is, whether hopping is mechanistically distinct from frameshifting, or if it is just frameshifting over longer distances. Yet there is almost certainly a mechanistic difference between frameshifting and hopping. It is easy to propose that programmed frameshift events are mechanistically very related to the nonprogrammed errors which occur during translation, as I have attempted to do.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atkins JF, Gesteland RF. Genetic codc—A case for trans translation. Nature 1996; 379:769–771.

    Article  PubMed  CAS  Google Scholar 

  2. Baron C, Böck A. The selenocysteine-inserting tRNA species: Structure and function. In: Söll D, RajBhandary U, eds. tRNA, Structure, Biosynthesis and Function. Washington, DC: ASM Press, 1995:529–544.

    Google Scholar 

  3. Benhar I, Engelberg-Kulka H. Frameshifting in the expression of the E. coli trpR gene occurs by the bypassing of a segment of its coding sequence. Cell 1993; 72:121–130.

    Article  PubMed  CAS  Google Scholar 

  4. Benhar I, Engelberg-Kulka H. A procedure for amino acid sequencing in internal regions of proteins. Gene 1991; 103:79–82.

    Article  PubMed  CAS  Google Scholar 

  5. Benhar I, Miller C, Engelberg-Kulka H. Frameshifting in the expression of the Escherichia coli trpR gene. Mol Microbiol 1992; 6:2777–2784.

    Article  PubMed  CAS  Google Scholar 

  6. Brinkmann U, Mattes RE, Buckel P. Highlevel expression of recombinant genes in Escherichia coli is dependent on the availability of the dnaY gene product. Gene 1989; 85:109–114.

    Article  PubMed  CAS  Google Scholar 

  7. Brown CM, Stockwell PA, Trotman CNA et al. Sequence analysis suggests that tetranucleotides signal the termination of protein synthesis in eukaryotes. Nucleic Acids Res 1990; 18:6339–6345.

    Article  PubMed  CAS  Google Scholar 

  8. Brown JW, Hunt DA, Pace NR. Nucleotide sequence of the 10Sa RNA gene of the beta-purple eubacterium Alcaligenes eutrophus. Nucleic Acids Res 1990; 18:2820.

    Google Scholar 

  9. Cavicchioli R, East PD, Watson K. endAFS, a novel family E endoglucanase gene from Fibrobacter succinogenes AR1. J Bacteriol 1991; 173:3265–3268.

    PubMed  CAS  Google Scholar 

  10. Chu FK, Maley GF, Maley F et al. Intervening sequence in the thymidylate synthase gene of bacteriophage T4. Proc Natl Acad Sci USA 1984; 81:3049–3053.

    Article  PubMed  CAS  Google Scholar 

  11. Gott JM, Shub DA, Beifort M. Multiple self-splicing introns in bacteriophage T4: evidence from autocatalytic GTP labeling of RNA in vitro. Cell 1986; 47:81–87.

    Article  PubMed  CAS  Google Scholar 

  12. Herbst K, Nichols L, Gesteland R et al. A mutation in ribosomal protein L9 affects ribosomal hopping during translation of gene 60 from bacteriophage T4. Proc Natl Acad Sci USA 1994; 91:12525–12529.

    Article  PubMed  CAS  Google Scholar 

  13. Huang WM, Ao S-Z, Casjens S et al. A persistent untranslated sequence within bacteriophage T4 DNA topoisomerase gene 60. Science 1988; 239:1005–1012.

    Article  PubMed  CAS  Google Scholar 

  14. Jentsch S. When proteins receive deadly messages at birth. Science 1996; 271:955–956.

    Article  PubMed  CAS  Google Scholar 

  15. Kane JF, Violand BN, Curran DF et al. Novel in-frame two codon translational hop during synthesis of bovine placental lactogen in a recombinant strain of Escherichia coli. Nucleic Acids Res 1992; 20:6707–6712.

    Article  PubMed  CAS  Google Scholar 

  16. Keiler KC, Silber KR, Downard KM et al. C-terminal specific protein degradation: activity and substrate specificity of the Tsp protease. Protein Sci 1995; 4:1507–1515.

    Article  PubMed  CAS  Google Scholar 

  17. Keiler KC, Waller PR, Sauer RT. Role of a peptide tagging system in degradation of proteins synthesized from damaged messenger RNA. Science 1996; 271:990–993.

    Article  PubMed  CAS  Google Scholar 

  18. Komine Y, Kitabatake M, Yokogawa T et al. A tRNA-like structure is present in 10Sa RNA, a small stable RNA from Escherichia coli. Proc Natl Acad Sci USA 1994; 91:9223–9227.

    Article  PubMed  CAS  Google Scholar 

  19. Liu LF, Liu CC, Alberts BM. T4 DNA topoisomerase: a new ATP-dependent enzyme essential for initiation of T4 bacteriophage DNA replication. Nature 1979; 281:456–461.

    Article  PubMed  CAS  Google Scholar 

  20. Manch-Citron J, London J. Expression of the Prevotella loescheii adhesin gene (iplaA) is mediated by a programmed frameshifting hop. J Bacteriol 1994; 176:1944–1948.

    PubMed  CAS  Google Scholar 

  21. Matsushita O, Russell JB, Wilson DB. A Bacteroides ruminicola 1,4-β-D-endoglucanase is encoded in two reading frames. J Bacteriol 1991; 173:6919–6926.

    PubMed  CAS  Google Scholar 

  22. Oh BK, Apirion D. 10Sa RNA, a small stable RNA of Escherichia coli, is functional. Mol Gen Genet 1991; 229:52–6.

    Article  PubMed  CAS  Google Scholar 

  23. Olins PO, Lee SC. Recent advances in heterologous gene expression in Escherichia coli. Curr Opin Biotechnol 1993; 4: 520–525.

    Article  PubMed  CAS  Google Scholar 

  24. Parsell DA, Silber KR, Sauer RT. Carboxyterminal determinants of intracellular protein degradation. Genes Dev 1990; 4:277–86.

    Article  PubMed  CAS  Google Scholar 

  25. Polard P, Prère MF, Chandler M et al. Programmed translational frameshifting and initiation at an AUU codon in gene expression of bacterial insertion sequence IS911. J Mol Biol 1991; 222:465–477.

    Article  PubMed  CAS  Google Scholar 

  26. Retallack DM, Johnson LL, Friedman DI. Role for 10Sa RNA in the growth of lambda-P22 hybrid phage. J Bacteriol 1994; 176:2082–9.

    PubMed  CAS  Google Scholar 

  27. Riyasaty S, Atkins J. External suppression of a frameshift mutation in Salmonella. J Mol Biol 1968; 34:541–557.

    Article  PubMed  CAS  Google Scholar 

  28. Sacerdot C, Fayat G, Dessen P et al. Sequence of 1.26 kb DNA fragment containing the structural gene for E. coli initiation factor IF-3: presence of an AUU initiator codon. EMBO J 1982; 1:311–315.

    PubMed  CAS  Google Scholar 

  29. Shub DA, Gott JM, Xu MQ et al. Structural conservation among three homologous introns of bacteriophage T4 and the group I introns of eukaryotes. Proc Natl Acad Sci USA 1988; 85:1151–1155.

    Article  PubMed  CAS  Google Scholar 

  30. Silber KR, Keiler KC, Sauer RT. Tsp: a tail-specific protease that selectively degrades proteins with nonpolar C termini. Proc Natl Acad Sci USA 1992; 89:295–9.

    Article  PubMed  CAS  Google Scholar 

  31. Silber KR, Sauer RT. Deletion of the prc (tsp) gene provides evidence for additional tail-specific proteolytic activity in Escherichia coli K-12. Mol Gen Genet 1994; 242: 237–40.

    Article  PubMed  CAS  Google Scholar 

  32. Sjoberg BM, Hahne S, Mathews CZ et al. The bacteriophage T4 gene for the small subunit of ribonucleotide reductase contains an intron. EMBO J 1986; 5:2031–6.

    PubMed  CAS  Google Scholar 

  33. Stetler GL, King GJ, Huang WM. T4 DNA-delay proteins, required for specific DNA replication, form a complex that has ATP-dependent DNA topoisomerase activity. Proc Natl Acad Sci USA 1979; 76:3737–3741.

    Article  PubMed  CAS  Google Scholar 

  34. Tu GF, Reid GE, Zhang JG et al. C-terminal extension of truncated recombinant proteins in Escherichia coli with a 10Sa RNA decapeptide. J Biol Chem 1995; 270:9322–9326.

    Article  PubMed  CAS  Google Scholar 

  35. Tyagi JS, Kinger AK. Identification of the 10Sa RNA structural gene of Mycobacterium tuberculosis. Nucleic Acids Res 1992; 20:138.

    Article  PubMed  CAS  Google Scholar 

  36. Ushida C, Himeno H, Watanabe T et al. tRNA-like structures in 10Sa RNAs of Mycoplasma capricolum and Bacillus subtilis. Nucleic Acids Res 1994; 22:3392–3396.

    Article  PubMed  CAS  Google Scholar 

  37. Ushida C, Muto A. Small stable RNAs in Mycoplasma capricolum. Nucleic Acids Symp Ser 1993; 157–158.

    Google Scholar 

  38. Weiss R, Huang W, Dunn D. A nascent peptide is required for ribosomal bypass of the coding gap in bacteriophage T4 gene 60. Cell 1990; 62:117–126.

    Article  PubMed  CAS  Google Scholar 

  39. Weiss RB, Dunn DM, Atkins JF et al. Slippery runs, shifty stops, backward steps, and forward hops: −2, −1, +1, +2, +5, and +6 ribosomal frameshifting. Cold Spring Harb Symp Quant Biol 1987; 52:687–693.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Farabaugh, P.J. (1997). tRNA Hopping. In: Programmed Alternative Reading of the Genetic Code. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5999-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5999-3_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7748-1

  • Online ISBN: 978-1-4615-5999-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics