Skip to main content

Protein Kinase C as a Sensor for Oxidative Stress in Tumor Promotion and Chemoprevention

  • Chapter
Oxidative Stress and Signal Transduction

Abstract

Protein kinase C (PKC) has emerged as a key enzyme that is activated by transmembrane signals such as products of phospholipid hydrolysis and Ca2+.1-5 PKC represents a family of more than 11 isoenzymes, which are divided broadly into Ca2+-dependent type (α,β,γ) and Ca2+-independent type (δ,ε,ζ, etc.).1-5 Differences in the subcellular localization as well as the expression of these isoenzymes in various cell types, enable PKC isoenzyme system to respond differentially to a wide variety of cellular stimuli.1-5 The experimental tumor promoters, phorbol esters, bind to activate PKC., which results in increased membrane association (translocation) of PKC., and ultimately leads to its down-regulation. PKC is also activated and inactivated by oxidant tumor promoters that play an important role in carcinogenesis in human settings.6-10 The unique structural aspects of PKC make it also a suitable target for the redox-sensitive cancer chemopreventive agents (antioxidants) as well as for growth-inhibiting natural products.11 This enzyme also has been shown to influence tumor cell properties such as cell motility, adhesion, invasion, and metastasis, and therefore it is involved not only in tumor promotion but also in the later events of carcinogenesis related to tumor progression.12-15 This is a crucial enzyme currently targeted for the development of cancer chemopreventive agents, antiproliferative, and antimetastatic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nishizuka, Y. 1992. Intracellular signalling by hydrolysis of phospholipids and activation of protein kinase C. Science 258: 607–614.

    PubMed  CAS  Google Scholar 

  2. Jaken, S. 1990. Protein kinase C and tumor promoters. Curr. Opin. Cell. Biol. 2: 192–197.

    PubMed  CAS  Google Scholar 

  3. Bell, R. M., and D. J. Burns. 1991. Lipid activation of protein kinase C. J. Biol. Chem. 266: 4661–4664.

    PubMed  CAS  Google Scholar 

  4. Rasmussen, H., C. M. Isales, R. Calle, D. Throcmorton, M. Anderson, J. Gasella Herraiz, and R. McCarthy. 1995. Diacylglycerol production, Ca2+ influx, and protein kinase C activation in sustained cellular responses. Endocr. Rev. 16: 649–676.

    PubMed  CAS  Google Scholar 

  5. Blumberg, P. M. 1991. Complexities of the protein kinase C pathway. Mol. Carcinog. 4: 330–344.

    Google Scholar 

  6. Gopalakrishna, R., and W. B. Anderson. 1989. Ca2+-, and phospholipid-independent activation of protein kinase C by selective oxidative modification of regulatory domain. Proc. Natl. Acad. Sci. USA 86: 6758–6762.

    PubMed  CAS  Google Scholar 

  7. Gopalakrishna, R., and W. B. Anderson. 1991. Reversible oxidative activation and inactivation of PKC by the mitogen/tumor promoter periodate. Arch. Biochem. Biophys. 285: 382–387.

    PubMed  CAS  Google Scholar 

  8. Gopalakrishna, R., Z. H. Chen, and U. Gundimeda. 1994. Tobacco smoke tumor promoters, catechol and hydroquinone induce oxidative regulation of protein kinase C and influence invasion and metastasis of lung carcinoma cells. Proc. Natl. Acad. Sci. USA 91: 12233–12237.

    PubMed  CAS  Google Scholar 

  9. Kass, G. E. N., S. K. Duddy, and S. Orrenius. 1989. Activation of hepatocyte protein kinase C by redox-cycling quinones. Biochem. J. 260: 499–507.

    PubMed  CAS  Google Scholar 

  10. Larsson, R., and P. Cerutti. 1989. Translocation and enhancement of phosphotransferase activity of protein kinase C following exposure of mouse epidermal cells to oxidants. Cancer Res. 49: 5627–5633.

    PubMed  CAS  Google Scholar 

  11. Gopalakrishna, R., Z. H. Chen, and U. Gundimeda. 1995. Modification of cysteinerich regions in protein kinase C induced by oxidant tumor promoters and the enzyme specific inhibitors. Methods Enzymol. 252: 134–148.

    Google Scholar 

  12. Gopalakrishna, R., and S. H. Barsky. 1988. Tumor promoter-induced membranebound protein kinase C regulates hematogenous metastasis. Proc. Natl. Acad. Sci. USA 85: 612–616.

    PubMed  CAS  Google Scholar 

  13. Korczak, B., C. Whale, and R. S. Kerbel. 1989. Possible involvement of Ca2+ mobilization and protein kinase C activation in the induction of spontaneous metastasis by mouse mammary adenocarcinoma. Cancer Res. 49: 2597–2560.

    PubMed  CAS  Google Scholar 

  14. Bonfil, R. D., S. Momiki, R. Fridman, R. Reddel, C. C. Harris, and A. Klein-Szanto. 1989. Enhancement of the invasive ability of a transformed human bronchial epithelial cell line by 12-O-tetradecanoyl-phorbol-13-acetate and diacyglycerol. Carcinogenesis 10: 2335–2338.

    PubMed  CAS  Google Scholar 

  15. Liu, B., and K. V. Honn. 1992. Protein kinase C inhibitor calphostin C inhibits B16 melanoma metastasis. Int. J. Cancer Res. 52: 147–153.

    CAS  Google Scholar 

  16. Halliwell, B., and C. E. Cross. 1991. Reactive oxygen species, antioxidants, and aquired immunodeficiency syndrome. Arch. Intern. Med. 151: 29–31.

    PubMed  CAS  Google Scholar 

  17. Ames, B. N., and R. L. Saul. 1987. Oxidative damage, cancer, and aging. Ann. Intern. Med. 107: 536–543.

    Google Scholar 

  18. Slaga, T. J., A. J. P. Kleen-Szanto, L. L. Triplet, and L. P. Yotti. 1981. Skin tumor promoting activity of benzoyl peroxide, a widely used free radical generating compound. Science 213: 1023–1025.

    PubMed  CAS  Google Scholar 

  19. Goldstein, B. D., G. Witz, M. Amoruso, D. S. Stone, and W. Troll. 1981. Stimulation of human polymorphonuclear leukocyte Superoxide anion radical production by tumor promoters. Cancer Lett. 11: 257–262.

    PubMed  CAS  Google Scholar 

  20. Kensler, T. W., and M. A. Trush. 1984. Role of oxygen radicals in tumor promotion. Environ. Mutagen. 6: 593–602.

    PubMed  CAS  Google Scholar 

  21. Cerutti, P. A. 1985. Prooxidant states and tumor promotion. Science 227: 375–381.

    PubMed  CAS  Google Scholar 

  22. Borek, C., and W. Troll. 1983. Modifiers of free radicals inhibit in vitro the oncogenic actions of x-rays, bleomycin, and the tumor promoter 12-O-tetradecanoylphorbol 13-acetate. Proc. Natl. Acad. Sci. USA 80: 1304–1308.

    PubMed  CAS  Google Scholar 

  23. Frenkel, K., and K. Chrzan. 1987. Hydrogen peroxide formation and DNA modification by tumor promoter-activated polymorphonuclear leukocytes. Carcinogenesis 8: 455–460.

    PubMed  CAS  Google Scholar 

  24. Burdon, R. H. 1995. Superoxide and hydrogen peroxide in relation to mammalian cell proliferation. Free. Rad. Biol. Med. 18: 775–794.

    PubMed  CAS  Google Scholar 

  25. Meyer, M., R. Schreck, J. M. Muller, and P. A. Baeuerle. 1994. Redox control of gene expression by eukaryotic transcription factors NF-κB, AP-1 and SRF/TCF, pp. 217–235. In C. Pasquier, C. Auclair, R. Y. Olivier, and L. Packer (eds.), Oxidative Stress, Cell Activation and Viral Infection. Birkhauser Verlag, Switzerland.

    Google Scholar 

  26. Rao, G. N., B. Lassegue, K. K. Griendling, and W. R. Alexander. 1993. Hydrogen peroxide stimulates transcription of c-jun in vascular smooth muscle cells: role of arachidoinic acid. Oncogene 8: 2759–2764.

    PubMed  CAS  Google Scholar 

  27. Schreck, R. B. 1991. A role for oxygen radicals as second messengers. Trends Cell Biol. 1: 39–42.

    PubMed  CAS  Google Scholar 

  28. Stauble, B., D. Boscoboinik, A. Tasinato, and A. Azzi. 1994. Modulation of activator protein-1 (AP-1) transcription factor and protein kinase C by hydrogen peroxide and D-a-tocopherol in vascular smooth muscle cells. Eur. J. Biochem. 226: 393–402.

    PubMed  CAS  Google Scholar 

  29. Amstad, P. A., G. Krupitza, and P. A. Cerutti. 1992. Mechanism of c-fos induction by active oxygen. Cancer Res. 52: 3952–3960.

    PubMed  CAS  Google Scholar 

  30. Abate, C., L. Patel, F. J. Rauscher III, and T. Curran. 1990. Redox regulation of Fos and Jun DNA-binding activity in vitro. Science 249: 1157–1161.

    PubMed  CAS  Google Scholar 

  31. Matthews, J. R., N. Wakasugi, J. L. Virelizier, J. Yodoi, and R. T. Hay. 1992. Thioredoxin regulates the DNA binding activity of NF-κB by reduction of a disulphide bond involving cysteine 62. Nucleic Acids Res. 20: 3821–3830.

    PubMed  CAS  Google Scholar 

  32. Cohen, P., C. F. B. Holmes, and Y. Tsukitani. 1990. Okadaic acid: a new probe for the study of cell regulation. Trans. Biochem. Sci. 15: 98–102.

    CAS  Google Scholar 

  33. Fischer, S. M., G. Furstenberger, F. Marks, and T. J. Slaga. 1987. Events associated with mouse skin tumor promoters with respect to arachidonic acid metabolism: a comparison between SENCAR and NMRI mice. Cancer Res. 47: 3174–3179.

    PubMed  CAS  Google Scholar 

  34. Ohuchi, K., M. Watanabe, K. Yoshizawa, S. Tsurufuji, H. Fujiki, M. Suganuma, T. Sugimura, and L. Levine. 1985. Stimulation of Prostaglandin E2 production by 12-O-tetradecanoylphorbol 13-acetate (TPA)-type and non-TPA-type tumor promoters in macrophages and its inhibition by cycloheximide. Biochem. Biophys. Acta 834: 42–47.

    PubMed  CAS  Google Scholar 

  35. Weitzman, S. A., A. B. Weitberg, E. P. Clark, and T. P. Stossel. 1985. Phagocytes as carcinogens malignant transformation produced by human neutrophils. Science 227: 1231–1233.

    PubMed  CAS  Google Scholar 

  36. Yamashina, K., B. E. Miller, and G. H. Heppner. 1986. Microphage mediated induction of drug resistant variants in a mouse mammary tumor cell line. Cancer Res. 46: 2396–2401.

    PubMed  CAS  Google Scholar 

  37. Robertson, F. M., A. J. Beavis, T. M. Oberyszyn, S. M. O’Connell, A. Dokidos, J. D. Laskin, and J. J. Reiners. 1990. Production of hydrogen peroxide by murine epidermal keratinocytes following treatment with the tumor promoter TPA. Cancer Res. 50: 6062–6067.

    PubMed  CAS  Google Scholar 

  38. Srinivas, L., and N. H. Colburn. 1984. Preferential oxidation of cell surface sialic acid by periodate leads to promotion of transformation in JB6 cells. Carcinogenesis 5: 515–519.

    PubMed  CAS  Google Scholar 

  39. Zhong, Z., W. Troll, K. L. Koenig, and K. Frenkel. 1990. Carcinogenic sulfides salts of nickel and cadmium induce H2O2 formation by human polymorphonuclear leukocytes. Cancer Res. 50: 7564–7570.

    PubMed  CAS  Google Scholar 

  40. Aiyar, J., H. J. Berkovits, R. Floyd, and K. E. Wetterhahn. 1991. Reaction of chromium (VI) with glutathione or with hydrogen peroxide: identification of reactive intermediates and their role in chromium (VI)-induced DNA damage. Environ. Health Perspect. 92: 53–62.

    PubMed  CAS  Google Scholar 

  41. Marsh, J. P., and B. T. Mossman. 1991. Role of asbestos and active oxygen species in activation of and expression of Ornithine decorboxylase in hamster tracheal epithelial cells. Cancer Res. 51: 167–173.

    PubMed  CAS  Google Scholar 

  42. Perderiset, M., J. P. Marsh, B. T. Mossman. 1991. Activation of protein kinase C by crocidolite asbestos in hamster tracheal epithelial cells. Carcinogenesis 12: 1499–1502.

    PubMed  CAS  Google Scholar 

  43. Ashurst, S. W., G. M. Cohen, S. Nesnow, J. Digiovanni, and T. J. Slaga. 1983. Formation of benzo(a)pyrene/DNA adducts and their relationship to tumor initiation in mouse epidermis. Cancer Res. 43: 1024–1029.

    PubMed  CAS  Google Scholar 

  44. Lorentzen, R. J., W. J. Caspary, S. A. Lesko, and P. O. P. Ts’o. 1975. The autoxidation of 6-hydroxybenzopyrene and 6 oxobenzopyrene radical, reactive metabolites of benzo(a)pyrene. Biochemistry 14: 3970–3977.

    CAS  Google Scholar 

  45. Frenkel, K., J. M. Donahue, and S. Banerjee. 1988. Benzo(a)pyrene-induced oxidative DNA damage: a possible mechanism for promotion by complete carcinogens, pp. 509–524. In P. Cerutti et al. (eds.), Oxy-Radicals in Molecular and Cellular Biology, Vol. 82. UCLA Symposium. New York: Alan R. Liss.

    Google Scholar 

  46. Trush, M. A., and T. W. Kensler. 1991. An overview of the relationship between oxidative stress and chemical carcinogenesis. Free Rad. Biol. Med. 10: 201–209.

    PubMed  CAS  Google Scholar 

  47. Pryor, W. A., and K. Stone. 1992. Oxidants in cigarette smoke radicals, hydrogen peroxide, peroxynitrate, and peroxynitrite. Ann. N. Y. Acad Sci. 686: 12–27.

    Google Scholar 

  48. Nakayama, T., D. F. Church, and W. A. Pryor. 1989. Quantitative analysis of the hydrogen peroxide formed in aqueous cigarette tar extracts. Free Rad. Biol. Med. 7: 9–15.

    PubMed  CAS  Google Scholar 

  49. Cooney, R. V., A. A. Franke, P. J. Harwood, V. Hatch-Pigott, L. J. Custer, and L. J. Mordan. 1993. γ-Tocopherol detoxification of nitrogen dioxide: superiority to α-tocopherol. Proc. Natl. Acad. Sci. USA 90: 1771–1775.

    PubMed  CAS  Google Scholar 

  50. Nguyen, T. T., D. Brunson, C. L. Crespi, B. W. Penman, J. S. Wishnok, and S. R. Tannenbaum. 1992. DNA damage and mutation in human cells exposed to nitric oxide. Proc. Natl. Acad. Sci. USA 89: 3030–3034.

    PubMed  CAS  Google Scholar 

  51. Gopalakrishna, R., Z. Chen, and U. Gundimeda. 1993. Nitric oxide and nitric oxidegenerating agents induce a reversible inactivation of PKC and phorbol ester binding. J. Biol. Chem. 268: 27180–27185.

    PubMed  CAS  Google Scholar 

  52. Hoffmann, D., S. S. Hecht, and E. L. Wynder. 1983. Tumor promoters and cocarcinogens in tobacco carcinogenesis. Environ. Health Prospect. 50: 247–257.

    CAS  Google Scholar 

  53. Hecht, S. S., S. Carmella, H. Mon, and D. Hoffmann. 1981. A study of tobacco carcinogenesis XX. Role of catechol as a major cocarcinogen in the weakly acidic fraction of smoke condensate. JNCI 66: 163–171.

    PubMed  CAS  Google Scholar 

  54. Leanderson, P., and C. Tagesson. 1990. Cigarette smoke-induced DNA damage: role of hydroquinone and catechol in the formation of the oxidative DNA-adduct, 8-hydroxydeoxyguanosine. Chem. Biol. Interact. 75: 71–81.

    PubMed  CAS  Google Scholar 

  55. Greenlee, W. F., J. D. Sun, and J. S. Bus. 1981. A proposed mechanism of benzene toxicity formation of reactive intermediates from polyphenol metabolites. Toxicol. Appl. Pharmacol. 59: 187–195.

    PubMed  CAS  Google Scholar 

  56. Picardo, M., S. Passi, M. Nazzaro-Porro, A. Breathnach, C. Zompetta, A. Faggioni, and P. Riley. 1987. Mechanism of antitumoral activity of catechols in culture. Biochem. Pharmacol. 36: 417–425.

    PubMed  CAS  Google Scholar 

  57. Willey, J. C., R. C. Grafstrom, C. E. Moser, C. Ozanne, K. Sundqvist, and C. C. Harris. 1987. Biochemical and morphological effects of cigarette smoke condensate and its fractions on normal human bronchial epithelial cells in vitro. Cancer Res. 47: 2045–2049.

    PubMed  CAS  Google Scholar 

  58. Talalay, P. 1989. Mechanisms of induction of enzymes that protect against chemical carcinogenesis. Adv. Enzyme Reg. 28: 237–242.

    CAS  Google Scholar 

  59. Wattenberg, L. W. 1983. Inhibition of neoplasia by minor dietary constituents. Cancer Res. 43 (suppl):2448s–2455s.

    PubMed  CAS  Google Scholar 

  60. Slaga, T. J., and W. M. Bracken. 1977. The effects of antioxidants on skin tumor initiation and arylhydrocarbon hydroxylase. Cancer Res. 37: 1631–1635.

    PubMed  CAS  Google Scholar 

  61. Bertram, J. S., L. N. Kolonel, and F. L. Meyskens, Jr. 1987. Rationale and strategies for chemoprevention of cancer in humans. Cancer Res. 47: 3012–3031.

    PubMed  CAS  Google Scholar 

  62. Borek, C. 1987. Radiation and chemically induced transformation: free radicals, antioxidants and cancer. Br. J. Cancer 55: 74–81.

    CAS  Google Scholar 

  63. Kennedy, A. R. 1988. Implications for mechanisms of tumor promotion and its inhibition by various agents from studies of in vitro transformation, pp. 201–212. In R. Langenbach et al. (eds.), Tumor Promoters: Biological Approaches for Mechanistic Studies and Assay Systems, (eds) R. Langenbach, E. Elmore, and J. C. Barrett. Raven Press, New York.

    Google Scholar 

  64. Boone, C. W., G. J. Kelloff, and W. E. Malone. 1990. Identification of candidate cancer chemopreventive agents and their evaluation in animal and human clinical trails. Cancer Res. 50: 2–9.

    PubMed  CAS  Google Scholar 

  65. DiMascio, P., S. Kaiser, and H. Sies. 1989. Lycopene as the most efficient biological carotenoid singlet oxygen quencher. Arch. Biochem. Biophys. 274: 532–536.

    CAS  Google Scholar 

  66. Pung, A., J. Rundhaug, C. N. Yoshizawa, and J. S. Bertram. 1988. β-carotene and canthaxanthin inhibit chemically—and physically—induced neoplastic transformation in 10T1/2 cells. Carcinogenesis 9: 1533–1539.

    PubMed  CAS  Google Scholar 

  67. Perchellet, J. P., M. D. Owen, T. D. Posey, D. K. Orten, and B. A. Scheider. 1985. Inhibitory effects of glutathione level-raising agents and D-α-tocopherol on Ornithine decarboxylase induction and mouse skin tumor promotion by 12-O-tetradecanoylphorbol-13-acetate. Carcinogenesis 6: 567–573.

    PubMed  CAS  Google Scholar 

  68. Gali, H. U., E. M. Perchellet, D. S. Klish, J. M. Johnson, and J. P. Perchellet. 1992. Antitumor-promoting activities of hydrolyzable tannins in mouse skin. Carcinogenesis 13: 715–728.

    PubMed  CAS  Google Scholar 

  69. Brady, J. F., D. Li, H. Ishizaki, and C. S. Yang. 1988. Effect of diallyl sulfide on rat liver microsomal nitrosamine metabolism and other monooxygenase activities. Cancer Res. 48: 5937–5942.

    PubMed  CAS  Google Scholar 

  70. Quest, A. F. G., J. Bloomenthal, E. S. G. Bardes, and R. M. Bell. 1992. The regulation domain of protein kinase C coordinates four atoms of Zinc. J. Biol. Chem. 267: 10193–10197.

    PubMed  CAS  Google Scholar 

  71. Helzisouer, K. J., and T. W. Kensler. 1993. Cancer chemoprotection by oltipraz: experimental and clinical considerations. Prev. Med. 22: 783–795.

    Google Scholar 

  72. Roebuck, B. D., Y.-L. Liu, A. E. Rogers, J. D. Groopman, and T. W. Kensler. 1991. Protection against aflatoxin B 1-induced hepatocarcinogenesis in F344 rats by 5-(2-pyrazinyl)-4-methyl-l,2-dithiole-3-thione (oltipraz): predictive role for shortterm molecular dosimetry. Cancer Res. 51: 5501–5506.

    PubMed  CAS  Google Scholar 

  73. Wattenberg, L. W., and E. Bueding. 1986. Inhibitory effects of 5-(2-pyrazinyl)-4-methyl-l,2-dithiol-3-thione (oltipraz) on carcinogenesis induced by benzo[a] pyrene, diethylnitrosamine and uracil mustard. Carcinogenesis 7: 1379–1381.

    PubMed  CAS  Google Scholar 

  74. Rao, C. V., K. M. Tokomo, G. Kelloff, and B. S. Reddy. 1991. Inhibition of dietary oltipraz of experimental intestinal carcinogenesis induced by azoxymetahne in male F344 rats. Carcinogenesis 12: 1051–1055.

    PubMed  CAS  Google Scholar 

  75. Milner, J. A., and C. Y. Hsu. 1981. Inhibitory effects of selenium on the growth of L1210 leukemia cells. Cancer Res. 41: 1652–1656.

    PubMed  CAS  Google Scholar 

  76. Medina, D., and F. Shepherd. 1981. Selenium-mediated inhibition of 7,12-dimethylbenzo(a)anthracene-induced mouse mammary tumorigenesis. Carcinogenesis 2: 451–455.

    PubMed  CAS  Google Scholar 

  77. Gundimeda, U., Z. Chen, and R. Gopalakrishna. 1994. Selenium interacts with cysteine-rich regions of protein kinase C and induces enzyme inactivation: its role in cancer chemoprevention (abstract). FASEB J. 8: 3136.

    Google Scholar 

  78. Gundimeda, U., Z. Chen, and R. Gopalakrishna. 1995. Tamoxifen modulates protein kinase C via oxidative stress in estrogen receptor-negative breast cancer cells. J. Biol. Chem. 271: 13504–13514.

    Google Scholar 

  79. Gopalakrishna, R., Z. Chen, K. Yoolee, and U. Gundimeda. 1994. Chelerythrine and sangunarine induce membrane translocation and irreversible inactivation of protein kinase C by modifying thiol residues (abstract). Proc. Am. Assoc. Cancer Res. 35: 615.

    Google Scholar 

  80. Taher, M. M., J. G. Garcia, and V. Natarajan. 1993. Hydroperoixde-induced diacylglycerol formation and protein kinase C activation in vascular endothelial cells. Arch. Biochem. Biophys. 303: 260–266.

    PubMed  CAS  Google Scholar 

  81. Whisler, R. L., M. A. Goyette, I. S. Grants, and Y. G. Newhouse. 1995. Sublethal levels of oxidant stress stimulate multiple serine/threonine kinases and suppress protein phosphatases in jurkat T cells. Arch. Biochem. Biophys. 319: 23–35.

    PubMed  CAS  Google Scholar 

  82. Brawn, M. K., W. J. Chiou, and K. L. Leach. 1995. Oxidant-induced activation of protein kinase C in UC11MG cells. Free Rad. Res. 22: 23–37.

    CAS  Google Scholar 

  83. Sweetman, L. L., N. Y. Zhang, H. Peterson, R. Gopalakrishna, and A. Sevanian. 1955. Effect of linoleic acid hydroperoxide on endothelial cell calcium homeostasis and phospholipid hydrolysis. Arch. Biochem. Biophys. 323: 97–107.

    Google Scholar 

  84. O’Brien, C. A., N. E. Ward, I. B. Weinstein, A. W. Bull, and L. J. Marnett. 1988. Activation of rat brain protein kinase C by lipid oxidation products. Biochem. Biophys. Res. Commun. 155: 1374–1380.

    Google Scholar 

  85. Akman, S. A., T. W. Kensler, J. H. Doroshow, and M. Diadaroglu. 1993. Copper ion-mediated modification of bases in DNA in vitro by benzoyl peroxide. Carcinogenesis 14: 1971–1974.

    PubMed  CAS  Google Scholar 

  86. Li, Y., and M. A. Trush. 1994. Reactive oxygen-dependent DNA damage resulting from the oxidation of phenolic compounds by a copper-redox cycle mechanism. Cancer Res. 354: 1895s–1898s.

    Google Scholar 

  87. Ip, C., and H. E. Ganther. 1990. Activity of Methylated forms of selenium in cancer prevention. Cancer Res. 50: 1206–1211.

    PubMed  CAS  Google Scholar 

  88. Tsen, C. C., and A. L. Tappel. 1958. Catalytic oxidation of glutathione and other sulfhydryl by selenite. 233: 1230–1232.

    CAS  Google Scholar 

  89. Ganther, H. E. 1968. Selenotrisulfides formation by the reaction of thiols with selenious acid. Biochemistry 7: 2898–2905.

    PubMed  CAS  Google Scholar 

  90. Frenkel, G. D., and D. Falvey. 1988. Evidence for the involvement of sulfhdryl compounds in the inhibition of cellular DNA synthesis by selenite. Mol. Pharmacol. 34: 573–577.

    PubMed  CAS  Google Scholar 

  91. Lu, Y. P., R. L. Chang, M. T. Huang, and A. H. Conney. 1993. Inhibitory effect of curcumin on 12-O-tetradecanoylphorbol-13-acetate-induced increase in Ornithine decarboxylase mRNA in mouse epidermis. Carcinogenesis 14: 293–297.

    PubMed  CAS  Google Scholar 

  92. Lu, Y. P., R. L. Chang, Y. R. Lou, M. T. Huang, H. L. Newmark, K. R. Reuhl, and A. H. Conney. 1994. Effect of Curcumin on 12-O-tetradecanoylphorbol-13-acetate and ultraviolet B light-induced expression of c-Jun and c-Fos in JB6 cells and in mouse epidermis. Carcino genesis 15: 2363–2368.

    CAS  Google Scholar 

  93. Singh, S., and B. B. Aggarwal. 1995. Activation of transcriptional factor NF-κB is suppressed by curcumin (diferuloylmethane). J. Biol Chem. 270: 24995–25000.

    PubMed  CAS  Google Scholar 

  94. Lin, J. K., and C. A. Shih. 1994. Inhibitory effect of curcumin on xanthine dehydrogenase/oxidase induced by phorbol-12-myristate-13-acetate in NIH3T3 cells. Carcinogenesis 15: 1717–1721.

    PubMed  CAS  Google Scholar 

  95. Lui, J. Y., S. J. Lin, and J. K. Lin. 1993. Inhibitory effects of curcumin on protein kinase C activity induced by 12-O-tetradecanoyl-phorbol-13-acetate in NIH 3T3 cells. Carcinogenesis 14: 857.

    Google Scholar 

  96. Sreejayan and M. N. Rao. 1994. Curcuminoids as potent inhibitors of lipid peroxidation. J. Pharm. Pharmacol. 46: 1013–1017.

    PubMed  CAS  Google Scholar 

  97. Chignell, C. F., P. Bilski, K. J. Reszka, A. G. Motten, R. H. Sik, and T. A. Dahl. 1994. Spectral and photochemical properties of curcumin. Photochem. Photobiol. 59: 295–302.

    PubMed  CAS  Google Scholar 

  98. Dahl, T. A., P. Bilski, K. J. Reszka, and C. F. Chignell. 1994. Photocytotoxicity of curcumin. Photochem. and Photobiol. 59: 290–294.

    CAS  Google Scholar 

  99. Gorman, A. A., I. Hamblett, V. S. Srinivasan, and P. D. Wood. 1994. Curcuminderived transients: a pulsed laser and pulse radiolysis study. Photochem. Photobiol. 59: 389–398.

    PubMed  CAS  Google Scholar 

  100. Srinivasan, K. R. 1953. A Chromatographic study of the curcuminoids in Curcuma Longa, L. J. Pharm. Pharmacol. 5: 448–457.

    PubMed  CAS  Google Scholar 

  101. Ruby, A. J., G. Kuttan, K. D. Babu, K. N. Rajasekharan, and R. Kuttan. 1995. Antitumor and antioxidant activity of natural curcuminoids. Cancer Lett. 94: 79–83.

    PubMed  CAS  Google Scholar 

  102. Rajakumar, D. V., and M. N. A. Rao. 1995. Antioxidant properties of phenyl styryl ketones. Free Rad. Res. 22: 309–317.

    CAS  Google Scholar 

  103. Chen, Z., U. Gundimeda, and R. Gopalakrishna. 1996. Curcumin irreversibly inactivates protein kinase C activity and phorbol ester binding: its possible role in cancer chemoprevention. Proc. Am. Assoc. Cancer Res. (abstract 1922): 282.

    Google Scholar 

  104. Moreau, N., T. Martens, M. B. Fleury, and J. P. Leroy. 1990. Metabolism of oltipraz and glutathione reductase inhibition. Biochem. Pharmacol. 140: 1299–1305.

    Google Scholar 

  105. Langouet, S., B. Coles, F. Morel, L. Becquemont, P. Beaune, P. Guengerich, B. Ketter, and A. Guillouzo. 1995. Inhibition of CYP1A2 and CYP3A4 by oltipraz results in reduction of aflatoxin B1 metabolism in human hepatocytes in primary culture. Cancer Res. 55: 5574–5579.

    PubMed  CAS  Google Scholar 

  106. Chavan, S. J., W. G. Bornmann, C. Flexner, and H. J. Prochaska. 1995. Inactivation of human immunodeficiency virus 1 reverse transcriptase by oltipraz: evidence for the formation of a stable adduct. Arch. Biochem. Biophys. 324: 143–152.

    PubMed  CAS  Google Scholar 

  107. Gopalakrishna, R., Z. Chen, U. Gundimeda, and T. Kensler. 1996. Reversible inactivation of protein kinase C by oltipraz through reaction with the catalytic domain: role in inhibition of tumor promotion. Proc. Am. Assoc. Cancer Res. (abstract 1817): 267.

    Google Scholar 

  108. Gopalakrishna, R., S. H. Barsky, P. T. Thomas, and W. B. Anderson. 1986. Factors influencing phorbol diester-induced membrane association of protein kinase C. J. Biol. Chem. 261: 16438–16445.

    PubMed  CAS  Google Scholar 

  109. Gopalakrishna, R., and S. H. Barsky. 1986. Hydrophobic association of calpains with subcellular organelles—compartmentalization of calpains and the endogenous inhibitor calpastatin in tissues. J. Biol Chem. 261: 13936–13942.

    PubMed  CAS  Google Scholar 

  110. Van den Bosch, H., R. B. H. Schutgens, R. J. A. Wanders, and J. M. Tager. 1992. Biochemistry of peroxisomes. Anna. Rev. Biochem. 61: 157–197.

    Google Scholar 

  111. Gopalakrishna, R., Z. H. Chen, and U. Gundimeda. 1992. Irreversible inactivation of protein kinase C by photosensitive inhibitor calphostin C. FEBS Lett. 314: 149–154.

    PubMed  CAS  Google Scholar 

  112. Stadtman, E. R., and C. N. Oliver. 1991. Metal catalyzed oxidation of proteins. J. Biol. Chem. 266: 2005–2008.

    PubMed  CAS  Google Scholar 

  113. Doroshow, J. H. 1986. Role of hydrogen peroxide and hydroxyl radicle in the killing of Ehrlich tumor cells by anticancer quinones. Proc. Natl. Acad. Sci. USA 83: 4514–4518.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gopalakrishna, R., Chen, ZH., Gundimeda, U. (1997). Protein Kinase C as a Sensor for Oxidative Stress in Tumor Promotion and Chemoprevention. In: Forman, H.J., Cadenas, E. (eds) Oxidative Stress and Signal Transduction. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5981-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5981-8_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7741-2

  • Online ISBN: 978-1-4615-5981-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics