Skip to main content

Part of the book series: Population and Community Biology Series ((PCBS,volume 18))

Abstract

Classical models for the dynamics of biological populations, such as the famous logistic and Lotka-Volterra equations, involve population-level statistics and parameters. In the “structured” population models of this book, individual members of the population are classified in some manner, usually by means of certain physiological characteristics, and the distribution of individuals based upon this classification is dynamically modeled.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  • Allee, W. C. 1931. Animal Aggregations. University of Chicago Press.

    Google Scholar 

  • Clark, C. W. 1976. Mathematical Bioeconomics: The Optimal Management of Renewable Resources. Wiley, New York.

    Google Scholar 

  • Costantino, R. F., and R. A. Desharnais. 1991. Population Dynamics and the’ Tribolium’ Model: Genetics and Demography. Monographs on Theoretical and Applied Genetics 13. Springer, Berlin.

    Book  Google Scholar 

  • Costantino, R. F., J. M. Cushing, B. Dennis, and R. A. Desharnais. 1995. Experimentally induced transitions in the dynamic behaviour of insect populations. Nature 375: 227–230.

    Article  CAS  Google Scholar 

  • Crowe, K. M. 1991. A discrete size-structured competition model. Ph.D. diss. University of Arizona, Tucson.

    Google Scholar 

  • Cushing, J. M. 1988a. Nonlinear matrix models and population dynamics. Natural Resource Modeling 2(4): 539–580.

    Google Scholar 

  • Cushing, J. M. 1988b. The Allee effect in age-structured population dynamics. Pp. 479–505 in T. G. Hallam, L. J. Gross, and S. A. Levin, eds., Mathematical Ecology. World Scientific Press, Singapore.

    Google Scholar 

  • Cushing, J. M. 1991a. A simple model of cannibalism. Mathematical Biosciences 107(1): 47–72.

    Google Scholar 

  • Cushing, J. M. 1991b. Some delay models for juvenile vs. adult competition. Pp. 177–188 in S. Busenberg and M. Martelli, eds., Differential Models in Biology, Epidemiology, and Ecology. Springer-Verlag, Berlin.

    Google Scholar 

  • Cushing, J. M. 1995. Nonlinear matrix models for structured populations. Chapter 26 in O. Arino, D. Axelrod, M. Kimmel, and M. Langlais, eds., Mathematical Population Dynamics III: Mathematical Methods and Modelling of Data. Wuerz, Winnipeg.

    Google Scholar 

  • Cushing, J. M., and J. Li. 1989. On Ebenman’s model for the dynamics of a population with competing juveniles and adults. Bulletin of Mathematical Biology 51: 687–713.

    Google Scholar 

  • Cushing, J. M., and J. Li. 1991. Juvenile versus adult competition. Journal of Mathematical Biology 29: 457–473.

    Google Scholar 

  • Cushing, J. M., and J. Li. 1992. Intra-specific competition and density dependent juvenile growth. Bulletin of Mathematical Biology 54(4): 503–519.

    Google Scholar 

  • Cushing, J. M., and Zhou Y. 1995. The net reproductive number and stability in linear structured population models. Natural Resource Modeling 8: 297–333.

    Google Scholar 

  • Dennis, B. 1989. Allee effects: Population growth, critical density, and the chance of extinction. Natural Resource Modeling 3: 481–538.

    Google Scholar 

  • Dennis, B., R. Desharnais, J. M. Cushing, and R. Costantino. 1995. Nonlinear demographic dynamics: Mathematical models, statistical methods, and biological experiments. Ecological Monographs 65: 261–281.

    Article  Google Scholar 

  • Ebenman, B. 1987. Niche difference between age classes and intraspe-cific competition in age-structured populations. Journal of Theoretical Biology 124: 25–33.

    Article  Google Scholar 

  • Ebenman, B. 1988a. Competition between age classes and population dynamics. Journal of Theoretical Biology 131: 389–400.

    Google Scholar 

  • Ebenman, B. 1988b. Dynamics of age-and size-structured populations: In-traspecific competition. Pp. 127–139 in B. Ebenman and L. Persson, eds., Size-Structured Populations: Ecology and Evolution. Springer-Verlag, Berlin.

    Google Scholar 

  • Ebenman, B., and L. Persson, eds. 1988. Size-Structured Populations: Ecology and Evolution. Springer-Verlag, Berlin.

    Google Scholar 

  • Gantmacher, F. R. 1960. The Theory of Matrices. Vol. II. Chelsea,New York.

    Google Scholar 

  • Impagliazzo, J. 1980. Deterministic Aspects of Demography. Springer, Berlin.

    Google Scholar 

  • Lauwerier, H. A. 1986. Two-dimensional iterative maps. Pp. 58–95 in A. V. Holden, ed., Chaos. Princeton University Press, Princeton, N.J.

    Google Scholar 

  • Loreau, M. 1990. Competition between age classes, and the stability of stage-structured populations: A re-examination of Ebenman’s model. Journal of Theoretical Biology 144: 567–571.

    Article  Google Scholar 

  • May, R. M., G. R. Conway, M. P. Hassell, and T. R. E. Southwood. 1974. Time delays, density-dependence and single-species oscillations. Journal of Animal Ecology 43: 747–770.

    Article  Google Scholar 

  • Rabinowitz, P. H. 1971. Some global results for nonlinear eigenvalue problems. Journal of Functional Analysis 1(3): 487–513.

    Article  Google Scholar 

  • Sokoloff, A. 1974. The Biology of ‘Tribolium’. Vol. 2. Oxford University Press.

    Google Scholar 

  • Tschumy, W. O. 1982. Competition between juveniles and adults in age-structured populations. Theoretical Population Biology 21: 255–268.

    Article  Google Scholar 

  • Usher, M. B. 1966. A matrix approach to the management of renewable resources with special reference to forests. Journal of Applied Ecology 3: 355–367.

    Article  Google Scholar 

  • Usher, M. B. 1972. Developments in the Leslie matrix model. Pp. 29–60 in J. M. R. Jeffers, ed., Mathematical Models in Ecology. Blackwell, London.

    Google Scholar 

  • Wiggins, S. 1990. Introduction to Applied Nonlinear Dynamical Systems and Chaos. Tests in Applied Mathematics, Vol. 2. Springer, Berlin.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Cushing, J.M. (1997). Nonlinear Matrix Equations and Population Dynamics. In: Tuljapurkar, S., Caswell, H. (eds) Structured-Population Models in Marine, Terrestrial, and Freshwater Systems. Population and Community Biology Series, vol 18. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5973-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5973-3_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-412-07271-0

  • Online ISBN: 978-1-4615-5973-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics