Skip to main content

Nonlinear Models of Structured Populations: Dynamic Consequences of Stage Structure and Discrete Sampling

  • Chapter
Structured-Population Models in Marine, Terrestrial, and Freshwater Systems

Part of the book series: Population and Community Biology Series ((PCBS,volume 18))

Abstract

The importance of linear models in the study of the dynamics of structured populations is great. Yet, probably only a few population phenomena can be assumed to be linear. Nonlinearity arises whenever interaction is incorporated into mathematical models, as for density dependence, predator-prey relationships, competition, external forcing, and spatial effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  • Brillinger, D. R., J. Guckenheimer, P. Guttorp, and G. Oster. 1980. Empirical modelling of population time series data: The case of age and density dependent vital rates. Lectures on Mathematics in the Life Sciences 13: 65–90.

    Google Scholar 

  • Caswell, H. 1989. Matrix Population Models. Sinauer, Sunderland, Mass.

    Google Scholar 

  • Caswell, H., and A. M. John. 1992. From the individual to the population in demographic models. Pp. 36–61 in D. L. DeAngelis and L. J. Gross, eds., Individual-Based Models and Approaches in Ecology. Chapman & Hall, New York.

    Google Scholar 

  • Cushing, J. M. 1989. A strong ergodic theorem for some nonlinear matrix models for the dynamics of structured populations. Natural Resources Modeling 3(3): 331–357.

    Google Scholar 

  • DeAngelis, D. L., and L. J. Gross, eds. 1992. Individual-Based Models and Approaches in Ecology. Chapman & Hall, New York.

    Google Scholar 

  • Gurney, W. S. C., S. P. Blythe, and R. M. Nisbet. 1980. Nicholson’s blowflies revisited. Nature 287: 17–21.

    Article  Google Scholar 

  • May, R. M., G. R. Conway, M. P. Hassell, and T. R. E. Southwood. 1974. Time delays, density-dependence and single-species oscillations. Journal of Animal Ecology 43: 747–770.

    Article  Google Scholar 

  • Metz, J. A. J., and O. Diekmann, eds. 1986. The Dynamics of Physiologically Structured Populations. Lecture Notes in Biomathematics 68. Springer-Verlag, Berlin.

    Google Scholar 

  • Murdoch, W. W., R. M. Nisbet, S. P. Blythe, W. S. C. Gurney, and J. D. Reeve. 1987. An invulnerable age class and stability in delay-differential parasitoid-host models. American Naturalist 129: 263–282.

    Article  Google Scholar 

  • Murray, J. D. 1989. Mathematical Biology. Springer-Verlag, Berlin.

    Google Scholar 

  • Neves, K. W., and S. Thompson. 1992. Software for the numerical solution of systems of functional differential equations with state dependent delays. Journal of Applied Numerical Mathematics 9: 385–401.

    Article  Google Scholar 

  • Nicholson, A. J. 1954. An outline of the dynamics of animal populations. Australian Journal of Zoology 2: 9–65.

    Article  Google Scholar 

  • Nisbet, R. M., and W. S. C. Gurney. 1982. Modelling Fluctuating Populations. Wiley, New York.

    Google Scholar 

  • Readshaw, J. L., and W. R. Cuff. 1980. A model of Nicholson’s blowfly cycles and its relevance to predation theory. Journal of Animal Ecology 49: 1005–1010.

    Article  Google Scholar 

  • Readshaw, J. L., and A. C. M. VanGerwen. 1983. Age-specific survival, fecundity and fertility of the adult blowfly, Lucilia cuprina, in relation to crowding, protein food, and population cycles. Journal of Animal Ecology 52: 879–887.

    Article  Google Scholar 

  • Tuljapurkar, S. D. 1989. An uncertain life: Demography in random environments. Theoretical Population Biology 35: 227–294.

    Article  PubMed  CAS  Google Scholar 

  • Wolfram, S. 1984. Cellular automata as models of complexity. Nature 311: 419–424.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Val, J., Villa, F., Lika, K., Boe, C. (1997). Nonlinear Models of Structured Populations: Dynamic Consequences of Stage Structure and Discrete Sampling. In: Tuljapurkar, S., Caswell, H. (eds) Structured-Population Models in Marine, Terrestrial, and Freshwater Systems. Population and Community Biology Series, vol 18. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5973-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5973-3_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-412-07271-0

  • Online ISBN: 978-1-4615-5973-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics