Skip to main content

Health Benefits of Non-Digestible Oligosaccharides

  • Chapter

Part of the Advances in Experimental Medicine and Biology book series (AEMB,volume 427)

Abstract

Non-digestible oligosaccharides are complex carbohydrates of the non-a-glucan type which, because of the configuration of their osidic bonds, resist hydrolysis by salivary and intestinal digestive enzymes. In the colon they are fermented by anaerobic bacteria. Among the non-digestible oligosaccharides, the chicory fructooligosaccharides occupy a key position and, in most european countries, they are recognised as natural food ingredients. The other major products are the short chain fructooligosaccharides and galactooligosaccharides obtained by enzymatic synthesis using sucrose and lactose as substrates respectively, the soybean oligosaccharides, the xylooligosaccharides produced by partial hydrolysis of xylans and polydextrose or pyrodextrins prepared by a chemical treament of carbohydrates. The most well known effect of most non-digestible oligosaccharides, and in particular of the fructooligosaccharides, is the selective stimulation of the growth of Bifidobacteria thus modifying significantly the composition of the colonic microbiota. Such a modification, which has clearly been demonstrated in human volunteers, is meant to be benificial in part because it is accompanied by a significant reduction in the number of bacteria reported to have pathogenic potential. Within the framework of research and development of “functional foods”, such an effect justifies a “functional claim” for fructooligosaccharides namely “bifidogenesis”. They are also typical “prebiotics”. Besides their bifidogenic effect, the chicory fructooligosaccharides have additional nutritional properties on digestive physiological parameters like colonic pH and stool bulking which justify their classification as dietary fibers. Moreover, in experimental models, it has also been reported that they improve the bioavailability of essentiel minerals and that they reduce serum triglyceridemia by lowering hepatic lipogenesis. Such effects demonstrate interactions between the chicory fructooligosaccharides and key functions in the body but their significance for humans still need to be proven before being used to justify additional claims.

Keywords

  • Functional Food
  • Food Ingredient
  • Health Claim
  • Hepatic Lipid Metabolism
  • Colonic Microbiota

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4615-5967-2_22
  • Chapter length: 9 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   59.99
Price excludes VAT (USA)
  • ISBN: 978-1-4615-5967-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   79.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Roberfroid M. B. (1995) World of Ingredients March-April 42–44.

    Google Scholar 

  2. Delzenne N.M. & Roberfroid M.B. (1994) Lebensm.- Wiss. u.- Technol. 27, 1–6.

    CrossRef  CAS  Google Scholar 

  3. Gibson G.R. & Roberfroid M.B. (1994) J. Nutr. 125, 1401–1412.

    Google Scholar 

  4. Van Loo J., Coussement P., De Leenheer L., Hoebregs H. & Smits G. (1995) CRC Crit. Rev. Food Sci. Technol. 35(6), pp. 525–552.

    CrossRef  Google Scholar 

  5. Bach Knudsen K.E. & Hessov I. (1995) Br. J. Nutr. 74, 101–113.

    CrossRef  Google Scholar 

  6. Ellegärd L., Anderson H. & Bsaeus I. (1996) Eur. J. Clin. Nutr. in press.

    Google Scholar 

  7. Tokunaga T., Oku T. & Hosoya N. (1989) J. Nutr. 119, 553–559.

    CAS  Google Scholar 

  8. Wang X. & Gibson G. (1993) J. Appl. Bacteriol. 75, 373–380.

    CrossRef  CAS  Google Scholar 

  9. McKellar R.C. & Modler H.W. (1989) Appl. Microbiol. Biotechnol. 31, 537–541.

    CrossRef  CAS  Google Scholar 

  10. Mc Kellar R. C., Modler H. W. & Mullin J. (1993) Bifidobacteria Microflora 12, 75–86.

    Google Scholar 

  11. Gibson G.R., Beatty E.B., Wang X. & Cummings J.H. (1995) Gastroenterology 108, 975–982.

    CrossRef  CAS  Google Scholar 

  12. Williams C.H., Witherly S.A. & Buddington R.K. (1994) Microb. Ecolog. Health Dis. 7, 91–97.

    CrossRef  CAS  Google Scholar 

  13. Buddington R. K., Williams C. H., Sui-Chi Chen & Witjerly S. W. (1996) Am. J. Clin. Nutr. 63, 1–8.

    Google Scholar 

  14. Wise E. C., Heyl F.W. (1931) J. Amer. Pharm. Ass. 20, 26–29.

    CrossRef  CAS  Google Scholar 

  15. Heupke W., Blanckenburg K. (1934) Deut. Arch. Klin. Med. 176, 182–187.

    CAS  Google Scholar 

  16. Beringer A. and Wenger R. (1955) Dtsch. Zeitschr. Verdauungs und Stoffwechselkrankh. 15, 268–272.

    CAS  Google Scholar 

  17. Roberfroid M., Gibson G.R. & Delzenne N. (1993) Nutr. Rev. 51, 137–146.

    CrossRef  CAS  Google Scholar 

  18. Armstrong E.F., Eastwood M.A., Brydon W.Y. (1993) J.Nutr. 69, 913–920.

    CrossRef  CAS  Google Scholar 

  19. Hansen L., Knudsen K.B., Eggum B.O. (1992) Br.J.Nutr. 68,451–462.

    CrossRef  CAS  Google Scholar 

  20. Jenkins D.J.A., Peterson R.D., Thorne M.J., Ferguson P.W. (1987) Am.J.Gastroenterol.82, 1259–1263.

    CAS  Google Scholar 

  21. Tomlin J. and Read N.W. (1988) Eur.J.Clin.Nutr. 42, 857–861.

    CAS  Google Scholar 

  22. Muller-Lissner S.A. (1988) Br.Med.J. 296, 615–617.

    CrossRef  CAS  Google Scholar 

  23. Cummings J.H., Hill J.M., Jenkins J.A., Pearson J.R., Wiggins H.S. (1976) Am.J.Clin.Nutr. 29, 1468–1473.

    CAS  Google Scholar 

  24. Cummings J.H. (1978) Lancet i, 5–9.

    CrossRef  Google Scholar 

  25. Durrington et al. (1978) Lancet ii, 394–396.

    Google Scholar 

  26. Roberfroid M.B., Bornet F., Bouley C. & Cummings J.H. (1995) Nutr. Rev. 53, 127–130.

    CrossRef  CAS  Google Scholar 

  27. Fiordaliso M.F., Kok N., Desager J.P., Goethals F., Deboyser D., Roberfroid M. & Delzenne N. (1995) Lipids 30, 163–167.

    CrossRef  CAS  Google Scholar 

  28. Kok N., Roberfroid M. & Delzenne N. (1995) Arch. Biochem. Physiol. 103, B19.

    Google Scholar 

  29. Kok N, Roberfroid M, Robert A. & Delzenne N. (1996) Br. J. Nutr. in press.

    Google Scholar 

  30. Delzenne N., Aertsens J., Verplaetse H., Roccaro M. & Roberfroid M. (1995) Life Sci. 57, 1579–1587.

    CrossRef  CAS  Google Scholar 

  31. Levrat M., Rémésy C. & Demigné C. (1991) J. Nutr. 121, 1730–1737.

    CAS  Google Scholar 

  32. Ohta A., Osakabe N, Yamada K., Saito Y. & Hidaka H. (1993) J. Jap. Soc. Nutr. Food Sci. 46, 123–129.

    CrossRef  CAS  Google Scholar 

  33. Roland N., Nugon-Baudon L., Andrieux C. & Szylit O. (1995) Br. J. Nutr. 74, 239–249.

    CrossRef  CAS  Google Scholar 

  34. Franck A. (1992) Food Ingredients Europe, conference proceedings, pp. 193–197.

    Google Scholar 

  35. Roberfroid M.B. (1996) Nutr. Rev, in press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Roberfroid, M.B. (1997). Health Benefits of Non-Digestible Oligosaccharides. In: Kritchevsky, D., Bonfield, C. (eds) Dietary Fiber in Health and Disease. Advances in Experimental Medicine and Biology, vol 427. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5967-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5967-2_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7735-1

  • Online ISBN: 978-1-4615-5967-2

  • eBook Packages: Springer Book Archive