Skip to main content

Global Nuclear Energy/Materials Modeling in Support of Los Alamos Nuclear Vision Project: Long-Term Tradeoffs Between Nuclear-and Fossil-Fuel Burning

  • Chapter
Technology for Global Economic and Environmental Survival and Prosperity
  • 68 Accesses

Abstract

A global economics/energy/environmental (E3) model has been adapted with a nuclear energy/materials model to understand better “top-level”, long-term trade offs between civilian nuclear power, nuclear-weapons proliferation, fossil-fuel burning, and global economic welfare. Using a “business-as-usual” (BAU) point-of-departure case, economic, resource, and proliferation-risk implications of plutonium recycle in LWRS, as well as greenhouse-gas-mitigating carbon taxes and a range of nuclear-energy costs (capital and fuel), have been examined After describing the essential elements of the analysis approach being developed to support the Los Alamos Nuclear Vision Project, preliminary examples of parametric variations about the BAU base-case scenario are presented. The results described herein represent a sampling from a collection of more extensive results. The primary motivation here is: a) to compare the BAU base case with results from other studies; b) to model on a regionally resolved global basis long-term (to year ∼2100) evolution of plutonium accumulation in a variety of forms under a limited range of fuel-cycle scenarios; and c) to illustrate a preliminary connectivity between risks associated with nuclear energy and fossil-fuel burning (e.g., the relationship between nuclear proliferation and greenhouse-gas accumulations).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. K. Panofsky, Tension between nuclear proliferation danger, nuclear energy, and the disassembly of nuclear warheads, VIII Intern. Amaldi Conf., Piecenza Italy (October 5–7, 1995).

    Google Scholar 

  2. W. G. Sutcliffe, Selected papers from Global’95 concerning plutonium, Lawrence Livermore National Laboratory document UCRL-ID-124105 (June 14, 1996).

    Google Scholar 

  3. Management and disposition of excess weapons plutonium: reactor-related options, Committee on International Security and Arms Control, National Academy of Sciences, National Academy Press (1995).

    Google Scholar 

  4. F. Berkout, The rationale and economics of reprocessing, p. 35, (Ref. 2).

    Google Scholar 

  5. K. E. H. Wooley and A. D. Elsden, Why recycle?, p. 19, ibid

    Google Scholar 

  6. E. D. Arthur and R. L. Wagner, The Los Alamos National Laboratory nuclear vision project, Proc. of the Uranium Institute 21St Annual Symposium, London UK (September 4–6, 1996) (also, this conference).

    Google Scholar 

  7. T. R. La Porte, Social Responses to Large Technical Systems: Control or Anticipation, NATO ASI Series, Vol. 58, Kluwer Academic Publishers, Dordecht, Germany (1989).

    Google Scholar 

  8. J. Edmonds and J. M. Reilly, Global Energy: Assessing the Future, Oxford University Press, New York (1985).

    Google Scholar 

  9. J. Edmonds and J. M. Reilly, Global energy production and use to the year 2050, Energy, 8(6), 419 (1983).

    Article  Google Scholar 

  10. J. A. Edmonds, J. M. Reilly, R. H. Gardner, and A. Brenkert, Uncertainty in future global energy use and fossil fuel CO2 emissions 1975–2075, US Department of Energy Report DOE/NBB-0081 (December 1986).

    Google Scholar 

  11. J. Edmonds and J. M. Reilly, A long-term global energy economic model of carbon dioxide release from fossil fuel use, Energy Economics, 74 (April 1983).

    Google Scholar 

  12. J. A. Edmonds, M. Wise, and C. N. MacCracken, Advanced energy technology and climate change: an analysis using the global change assessment model (GCAM), Battelle Pacific Northwest Laboratory report PNL-9798 (May 1994).

    Google Scholar 

  13. J. A. Edmonds, M. Wise, and D. W. Barns, The cost and effectiveness of energy agreements to alter trajectories of atmospheric carbon dioxide emissions, Energy Policy, 23(4/5), 309 (1995).

    Article  Google Scholar 

  14. A. S. Manne and R. G. Richels, Buying Greenhouse Insurance: The Economic Costs of Carbon Dioxide Emission Limits, The MIT Press, Cambridge MA (1992).

    Google Scholar 

  15. LEAP long-range energy alternative planning system, User Guide for Version 94.0, Stockholm Environment Institute - Tellus Institute report, Boston MA (October 1993).

    Google Scholar 

  16. M. Lazarus, C. Heaps, and D. Hill, The SEI/UNEP fuel chain project: methods, issues and case studies in developing countries, Stockholm Environment Institute - Tellus Institute report, Boston MA (May 1995).

    Google Scholar 

  17. W. D. Nordhaus, Managing the Global Commons: the Economics of Climate Change, MIT Press, Cambridge Massachusetts (1993).

    Google Scholar 

  18. W. Haefele and L. K. Kirchmayer (eds.), Modeling of Large-Scale Energy Systems, Proc. IIASA/IFAC Symp. on Modeling Large-Scale Energy Systems, (February 2529, 1980), Pergamon Press, New York (1981).

    Google Scholar 

  19. N. Nakicenovic (Study Director), Global energy perspectives to 2050 and beyond, World Energy Council report prepared by IIASA (August 1995).

    Google Scholar 

  20. R. A. Krakowski, Global energy modeling in support of understanding long-term nuclear (materials) futures, Los Alamos National Laboratory document LA-UR-961931 (June 5, 1996).

    Google Scholar 

  21. R. A. Krakow ski, A multi-attribute utility approach to generating proliferation-risk metrics, Los Alamos National Laboratory document LA-UR-96–3620 (October 11, 1996).

    Google Scholar 

  22. R. A. Krakowski, Global economic/energy/environmental (E3) modeling in support of the Los Alamos National Laboratory nuclear visions project, Los Alamos National Laboratory document LA-UR (to be published, 1997).

    Google Scholar 

  23. W. D. Nordhaus, The Efficient Use of Energy Resources, Yale University Press, New Haven, Connecticut (1979).

    Google Scholar 

  24. W. D. Nordhaus and G. Yohe, Future carbon dioxide emissions for fossil fuels, Changing Climate, pp. 87–153, National Academy Press, New York (1983)

    Google Scholar 

  25. M. A. Wise, private communication, Battelle Pacific Northwest Laboratory, Washington D.C. (1995).

    Google Scholar 

  26. J. F. Clarke, The cost and benefit of energy technology in the global context, Proc. Conf. Technology Responses to Global Environmental Challenges: Energy Collaboration for the 21st Century, p. 521, Kyoto Japan (November 6–8, 1991).

    Google Scholar 

  27. W. Leontief, Input-Output Economics, Oxford University Press, Oxford (1966).

    Google Scholar 

  28. P. Silvennoinen, Nuclear Fuel Cycle Optimization. Methods and Modelling Techniques, Pergamon Press, Oxford (1982).

    Google Scholar 

  29. Nuclear Proliferation and Safeguards, U.S. Congress Office of Technology Assessment, Praeger Publishers, New York (1977).

    Google Scholar 

  30. B. G. Chow and K. A. Solomon, Limiting the Spread of Weapon-Usable Fissile Materials, RAND National Defense Research Institute, Santa Monica, CA (1993).

    Google Scholar 

  31. M. M. May, “Nuclear weapons supply and demand,” Amer. Sci., 82, 526 (1994).

    Google Scholar 

  32. T. B. Cochran, “Proliferation and the nuclear disarmament process,” Energy Policy, 23(3), 195 (1995).

    Article  MathSciNet  Google Scholar 

  33. M. M. May and R. E. Avedon, The future role of plutonium, Summary of a Workshop held at Stanford University, Center for International Security and Arms Control (March 29–30, 1994).

    Google Scholar 

  34. G. T. Seaborg (Chm.), Protection and management of plutonium, American Nuclear Society Special Panel report (August 1995).

    Google Scholar 

  35. F. Berkhous and H. Feiverson, Securing nuclear materials in a changing world, Ann. Rev. Energy Environ. 18, 631 (1993).

    Google Scholar 

  36. G. T. Gardner, Nuclear Proliferation: A Primer, Lynn Rienner Publishers London (1994).

    Google Scholar 

  37. J. Pilat and S. Maaranen, The virtual proliferation of nuclear weapons: is it real? does it matter?, personal communication, Los Alamos National Laboratory document CISA96–009 (January 26, 1996).

    Google Scholar 

  38. P. Silvennoinen and J. Vira, An approach to quantitative assessment of relative proliferation risks from nuclear fuel cycle, J. Oper. Res., 32, 457 (1981).

    Google Scholar 

  39. P. Silvennoinen and J. Vira, Quantifying relative proliferation risks from nuclear fuel cycles, Prog. Nuclear Energy, 17(3), 231 (1986).

    Article  Google Scholar 

  40. I. A. Papazaglou, E. P. Gyftopoulos, M. M. Miller, N. C. Rasmussen, and H. A. Raiffa, A methodology for the assessment of the proliferation resistance of nuclear power systems, Massachusetts Institute of Technology report MIT-EL 78–021/022 (September 1978).

    Google Scholar 

  41. C. D, Heising, I. Saragossi, and P Sharafi, A comparative assessment of the economics and proliferation resistance of advanced nuclear fuel cycles, Energy, 5, 1131 (1980).

    Article  Google Scholar 

  42. T. L. Saaty, A scaling method for priorities in hierarchical structures, J. Math. Psychol. 15, 234 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  43. R. A. Krakowski, Global energy projections: preliminary considerations of population-GNP feedback, Los Alamos National Laboratory document LA-UR-954316(Rev.) (January 22, 1996).

    Google Scholar 

  44. J. P. Holdren and R. K. Pachauri, Chapter 4: Energy, J. C. I. Dooge, G. T. Goodman, and J. W. M. la Riviere (eds.), An Agenda of Science and Technology into the 21st Century (1991).

    Google Scholar 

  45. World Bank, World Development Report 1990, New York (1990).

    Google Scholar 

  46. WEC Commission, Energy for Tomorrow’s World: the Realities, the Real Options, and the Agenda for Achievement, St. Martin’s Press, Kogan Page Ltd., London (1993).

    Google Scholar 

  47. D. Anderson, Energy and the environment, Special Briefing Paper No. 1, Edinburgh, Scotland, The Wealth of Nations Foundations (1991).

    Google Scholar 

  48. C. Starr, M.F. Searl, and S. Alpert, Energy sources: A realistic outlook, Science, 256, 981 (May 15, 1992).

    Google Scholar 

  49. Japan Research Institute of Energy Economics, W. F. Martin, Trilateral commission global energy security study discussion paper, Washington Policy and Analysis, Inc. (September 10, 1995).

    Google Scholar 

  50. W. F. Martin, R. Imai, and H. Steeg, Maintaining Energy Security in a Global Context, Report to the Trilateral Commission, Triangle Paper 48, The Trilateral Commission, New York (September 1996).

    Google Scholar 

  51. W. Pepper, et al., Emission scenarios for the IPCC: an update prepared for the IPCC working group I (May 1992).

    Google Scholar 

  52. N. Lanssen and C. Flavin, Sustainable energy for tomorrow’s world: the case for an optimistic view of the future, Energy Policy, 24(9), 769 (1996).

    Article  Google Scholar 

  53. WEC Commission, Renewable energy resources: opportunities and constraints 1990–2020, London (1993).

    Google Scholar 

  54. P. Beck, Prospects and Strategies for Nuclear Power: Global Boon or Dangerous Diversion?, Earthscan Publications, Ltd. (1994).

    Google Scholar 

  55. W. Burch, E. Rodwell, I. Taylor, and M. Thompson, A review of the economic potential of plutonium in spent fuel, Electric Power Research Institute report TR-106072 (February 1996).

    Google Scholar 

  56. D. J. Wuebbles and J. Edmonds, Primer on Greenhouse Gases, Lewis Publishers, Inc., Chelsea, Michigan (1991).

    Google Scholar 

  57. A. Dean, Costs of cutting CO2 emissions: evidence from ‘top-down’ models, Proc. OECD/IEA Conf. on the Economics of Climate Change, pp. 25–42, OECD, Paris (1994).

    Google Scholar 

  58. T. J. Johansson, et al., Renewable Energy: Sources for Fuels and Electricity, Island Press, Washington, DC (1996).

    Google Scholar 

  59. R. Lehtinen, P. Silvennoinen, and J. Vira, Long-term supply of uranium with an optimized exploration effort, Proc. ANS Topical Meeting on the Technical Bases for Nuclear Fuel Cycle Policy, Newport, RI (September 1981).

    Google Scholar 

  60. J. C. Fisher and R. H. Pry, A simple substitution model of technology change,“ Technological Forecasting and Social Change, 3, 75, (1971).

    Article  Google Scholar 

  61. V. Smil, China’s Environmental Crisis: An Inquiry into the Limits of National Development, M.E. Sharpe, Inc., N.Y. (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Krakowski, R.A. (1997). Global Nuclear Energy/Materials Modeling in Support of Los Alamos Nuclear Vision Project: Long-Term Tradeoffs Between Nuclear-and Fossil-Fuel Burning. In: Kursunoglu, B.N., Mintz, S.L., Perlmutter, A. (eds) Technology for Global Economic and Environmental Survival and Prosperity. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5961-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5961-0_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7732-0

  • Online ISBN: 978-1-4615-5961-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics