Skip to main content

Oligodendrocytes and Axonal Regrowth

A Double-Edged Sword

  • Chapter
Cell Biology and Pathology of Myelin

Part of the book series: Altschul Symposia Series ((ALSS,volume 4))

  • 118 Accesses

Abstract

Oligodendrocytes are postmitotic cells that develop from rapidly dividing precursor cells (Temple and Raff, 1986). Their survival depends on exogenous signaling molecules, such as growth factors, cytokines and neurotrophic factors (Arakawa et al., 1990; Barres et al., 1992, 1993; Buchman and Davies, 1993; Louis et al., 1993; McKinnon et al., 1990; Noble et al., 1988; Richardson et al., 1988).

To whom correspondence should be addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arakawa Y, Sendtner M and Thoenen H (1990): Survival effect of ciliary neurotrophic factor (CNTF) on chick embryonic motoneurons in culture: comparison with other neurotrophic factors and cytokines. J. Neurosci. 10: 3507–3515.

    PubMed  CAS  Google Scholar 

  • Bandtlow C, Zachleder T and Schwab ME (1990): Oligodendrocytes arrest neurite growth by contact inhibition. J. Neurosci. 10: 3837–3848.

    PubMed  CAS  Google Scholar 

  • Barres BA, Hart IK, Coles HS, Burne JF, Voyvodic JT, Richardson WD and Raff MC (1992): Cell death and control of cell survival in the oligodendrocyte lineage. Cell 70: 31–6.

    Article  PubMed  CAS  Google Scholar 

  • Barres BA, Schmid R, Sendtner M and Raff MC (1993): Multiple extracellular signals are required for long-term oligodendrocyte survival. Development 118: 283–295.

    PubMed  CAS  Google Scholar 

  • Bedi KS, Winter J, Berry M and Cohen J (1992): Adult rat dorsal root ganglion neurons extend neurites on prede-generated but not on normal peripheral nerves in vitro. Eur. J. Neurosci. 4: 193–200.

    Article  PubMed  Google Scholar 

  • Benveniste EN (1992): Inflammatory cytokines within the central nervous system: sources, function, and mechanism of action. Am. J. Physiol. 263: C1 - C16.

    PubMed  CAS  Google Scholar 

  • Buchman VL and Davies AM (1993): Different neurotrophins are expressed and act in a developmental sequence to promote the survival of embryonic sensory neurons. Development 118:989–1001. 10

    PubMed  CAS  Google Scholar 

  • Cadelli DS, Bandtlow CE and Schwab M (1992): Oligodendrocytes and myelin-associated inhibitors of neurite outgrowth: their involvement in the lack of CNS regeneration. Exp. Neurol. 115: 189–192.

    CAS  Google Scholar 

  • Carbonetto S, Evans D and Cochard P (1987): Nerve fiber growth in culture on tissue substrates from central and peripheral nervous system. J. Neurosci. 7: 610–620.

    PubMed  CAS  Google Scholar 

  • Caroni P and Schwab ME (1988): Antibody against myelin-associated inhibitor of neurite growth neutralizes non-permissive substrate properties of CNS white matter. Neuron 1: 85–96.

    Article  PubMed  CAS  Google Scholar 

  • Cohen A, Sivron T, Duvdevani R and Schwartz M (1990): Oligodendrocyte cytotoxic factor associated with fish optic nerve regeneration: implications for mammalian CNS regeneration. Brain Res. 537: 24–32.

    Article  PubMed  CAS  Google Scholar 

  • David S, Bouchard C, Tsatas O and Giftochristos N (1990): Macrophages can modify the nonpermissive nature of the adult mammalian central nervous system. Neuron 5: 463–69.

    Article  PubMed  CAS  Google Scholar 

  • Eitan S and Schwartz M (1993): A novel nerve-regeneration-associated transglutaminase that converts interleukin2 to a factor cytotoxic to oligodendrocytes. Science 261: 106–108.

    Article  PubMed  CAS  Google Scholar 

  • Eitan S, Zisling R, Cohen A, Belkin M, Hirschberg DL, Lotan M and Schwartz M (1992): Identification of an interleukin-2-like substance as a factor cytotoxic to oligodendrocytes and associated with central nervous system regeneration. Proc. Natl. Acad. Sci. USA 89: 5442–5446.

    Article  PubMed  CAS  Google Scholar 

  • Eitan S, Solomon A, Lavie V, Yoles E, Hirschberg DL, Belkin M and Schwartz M (1994): Recovery of visual re-sponse of injured adult rat optic nerves treated with transglutaminase. Science 264: 1764–1768.

    Article  PubMed  CAS  Google Scholar 

  • Eizenberg O. Faber-Elman A, Gottlieb E, Oren M, Rotter V and Schwartz M (1995): Direct involvement of p53 in programmed cell death of oligodendrocytes. EMBO J. 14: 1136–1144.

    PubMed  CAS  Google Scholar 

  • Eizenberg O, Faber-Elman A, Gottlieb E, Oren M, Rotter V and Schwartz M (1996): pS3 plays a regulatory role in differentiation and apoptosis of central nervous system-associated cells. Mol. Cell. Biol. 16 (in press).

    Google Scholar 

  • Faber-Elman A, Miskin R and Schwartz M (1995): Components of the plasminogen activator system in astrocytes are modulated by tumor necrosis factor-a and interleukin- 1 ß through similar signal transduction pathways. J. Neurochem. 65: 1524–1535.

    Article  PubMed  CAS  Google Scholar 

  • Hare] A, Fainaru M, Schafer Z, Hernandez M and Schwartz M (1989): Optic nerve regeneration in adult fish and apolipoprotein A-l. J. Neurochem. 52: 1218–1228.

    Article  Google Scholar 

  • Harel A, Fainaru M, Rubinstein M, Tal N and Schwartz M (1990): Fish apolipoprotein-A-1 has heparin-binding activity: implication for nerve regeneration. J. Neurochem. 55: 1237–1243.

    Article  PubMed  CAS  Google Scholar 

  • Heumann R, Lindholm D, Bandtlow C, Meyer M, Radeke MJ, Miko TP, Shooter E and Thoenen H (1987): Differential regulation of mRNA encoding nerve growth factor and its receptor in sciatic nerve during development, degeneration, and regeneration: role of macrophages. Proc. Natl. Acad. Sci. USA 84: 8735–8739.

    Article  PubMed  CAS  Google Scholar 

  • Hirschberg DL and Schwartz M (1995): Macrophage recruitment to acute injury in the CNS is inhibited by a resident factor: a basis for an immune-brain barrier. J. Neuroimmunol. 61: 89–96.

    Article  PubMed  CAS  Google Scholar 

  • Hirschberg DL, Yoles E, Belkin M and Schwartz M (1994): Inflammation after axonal injury has conflicting consequences for recovery of function: rescue of spared axons is impaired but regeneration is supported. J. Neuroimmunol. 50: 9–16.

    Article  PubMed  CAS  Google Scholar 

  • Lavie V, Murray M, Solomon A, Ben-Bassat S, Rumelt S, Belkin M and Schwartz M (1990): Growth of injured CNS axons within their degenerating optic nerve. J. Comp. Neurol. 298: 293–314.

    Article  PubMed  CAS  Google Scholar 

  • Lavie V, Murray M, Solomon A, Ben-Bassat S, Rumelt S, Belkin M and Schwartz M (1990): Growth of injured CNS axons within their degenerating optic nerve. J. Comp. Neurol. 298: 293–314.

    Article  PubMed  CAS  Google Scholar 

  • Lotan M, Solomon A, Ben-Bassat S and Schwartz M (1994): Cytokines modulate the inflammatory response and change permissiveness to neuronal adhesion in injured mammalian central nervous system. Exp. Neurol. 126: 284–290.

    CAS  Google Scholar 

  • Louis J-C, Magal E, Takayama S and Varon S (1993): CNTF protection of oligodendrocytes against natural and tumor necrosis factor-induced death. Science 259: 689–692.

    Article  PubMed  CAS  Google Scholar 

  • McKinnon RD, Matsui T, Dubois-Dalcq M and Aaronson SA (1990): FGF modulates the PDGF driven pathway of oligodendrocyte development. Neuron 5: 603–6614.

    Article  PubMed  CAS  Google Scholar 

  • Merrill JE and Jonakait GM (1995): Interactions of the nervous and immune systems in development, normal brain, homeostasis, and disease. FASEB J 9: 611–618.

    PubMed  CAS  Google Scholar 

  • Muller HW, Gebicke-Harter PJ, Hangen DH and Shooter EM (1985): A specific 37000-dalton protein that accumulates in regenerating but not in nonregenerating mammalian nerves. Science 228: 499–501.

    Article  PubMed  CAS  Google Scholar 

  • Noble M, Murray K, Strobant P, Waterfield MD and Riddle P (1988): Platelet-derived growth factor promotes division and motility and inhibits premature differentiation of the oligodendrocyteitype-2 astrocyte progenitor cell. Nature 333: 560–562.

    Article  PubMed  CAS  Google Scholar 

  • Perry VH, Brown MC and Gordon S (1987): The macrophage response to central and peripheral nerve injury. J. Exp. Med. 165: 1218–1223.

    Article  PubMed  CAS  Google Scholar 

  • Richardson WD, Pringle N, Mosley MJ, Watermark B and Dubois-Dalcq M (1988): A role for platelet-derived growth factor in normal gliogenesis in the central nervous system. Cell, 53: 309–319.

    Article  PubMed  CAS  Google Scholar 

  • Savio T and Schwab ME (1989): Rat CNS white matter, but not grey matter, is nonpermissive for neuronal cell adhesion and fiber outgrowth. J. Neurosci. 9: 1126–1129.

    PubMed  CAS  Google Scholar 

  • Schnell L and Schwab ME (1990): Axonal regeneration in the rat spinal cord produced by an antibody against myelin-associated neurite growth inhibitors. Nature 343: 269–272.

    Article  PubMed  CAS  Google Scholar 

  • Schwartz M, Belkin M, Harel A, Solomon A, Lavie V, Hadani M, Rachailovich I and Steinlzsak C (1985): Regenerating fish optic nerves and a regeneration-like response in injured optic nerves of adult rabbits. Science 228: 601–603.

    Google Scholar 

  • Schwartz M, Cohen A, Stein-lzsak C and Belkin M (1989): Dichotomy of the glial cell response to axonal injury and regeneration. FASEB J. 3: 2371–2378.

    PubMed  CAS  Google Scholar 

  • Sivron T and Schwartz M (1994): The enigma of myelin-associated growth inhibitors in spontaneously regenerating nervous systems. Trends Neurosci. 17: 277–281.

    Article  PubMed  CAS  Google Scholar 

  • Sivron T, Jeserich G, Nona S and Schwartz M (1992): Characteristics of glial cells in culture: possible implication as to their lineage. Glia 6: 52–66.

    Article  PubMed  CAS  Google Scholar 

  • Sivron T, Schwab ME and Schwartz M (1994): Presence of growth inhibitors in fish optic nerve myelin: post-injury changes. J. Comp. Neurol. 341: 1–10.

    Article  Google Scholar 

  • Stoll G and Muller H (1986): Macrophages in the peripheral nervous system and astroglia in the central nervous system of rat commonly express apolipoprotein-E during development but differ in their response to injury. Neurosci. Lett. 72: 233–238.

    Article  PubMed  CAS  Google Scholar 

  • Streilein JW (1993): Immune privilege as the result of local tissue barriers and immunosuppressive microenvironments. Curr. Opin. Immunol. 5: 428–432. 15

    Google Scholar 

  • Temple S and Raff MC (1986): Clonal analysis of oligodendrocyte development in culture: evidence for a developmental clock that counts cell divisions. Cell 44: 773–779.

    Article  PubMed  CAS  Google Scholar 

  • Thomas WE (1992): Brain macrophages: evaluation of microglia and their functions. Brain Res. Rev. 17: 61–74.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Schwartz, M., Eitan, S., Hirschberg, D.L., Eizenberg, O., Beserman, P. (1997). Oligodendrocytes and Axonal Regrowth. In: Juurlink, B.H.J., Devon, R.M., Doucette, J.R., Nazarali, A.J., Schreyer, D.J., Verge, V.M.K. (eds) Cell Biology and Pathology of Myelin. Altschul Symposia Series, vol 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5949-8_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5949-8_27

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-45595-7

  • Online ISBN: 978-1-4615-5949-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics