Skip to main content

Feasibility of Fatigue Crack Detection in Fluid-Filled Cylindrical Holes Using Circumferential Creeping Waves

  • Chapter
Review of Progress in Quantitative Nondestructive Evaluation

Part of the book series: Review of Progress in Quantitative Nondestructive Evaluation ((RPQN,volume 16))

  • 26 Accesses

Abstract

Recently, the development of a novel ultrasonic inspection technique that detects radial fatigue cracks on the far side of so-called “weep” holes in thin airframe stiffeners was reported [1]. These cracks tend to be located on the upper part of the weep hole (at 12 o’clock position) therefore are not readily detectable by conventional ultrasonic inspection techniques from the lower skin of the wing. The new technique utilizes circumferential creeping waves propagating around the inner surface of the hole to perform the inspection. However, the wet wing has to be emptied and dried out before inspection because even a small amount of fluid fuel trapped in these rather small (approximately 6–7 mm in diameter) holes would strongly affect the propagation of circumferential creeping waves. We have searched the literature for published results on circumferential creeping wave propagation around fluid-filled cylindrical cavities in elastic media. Surprisingly, although the analytical solution of this canonical problem can be readily constructed from existing building blocks, very little was found in terms of numerical results that could be used to gain better understanding of the phenomenon. This motivated us to attack the problem by numerically solving the dispersion equation and constructing the corresponding dispersion and attenuation curves for a specific case of interest, namely, for that of a water-filled cylindrical hole in aluminum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. B. Nagy, M. Blodgett, and M. Golis, NDT&E International 27, 131 (1994).

    Article  Google Scholar 

  2. B. Rulf, J. Acoust. Soc. Am. 45, 493 (1969).

    Article  Google Scholar 

  3. G. C. Gaunaurd, Appl. Mech. Rev. 42, 143 (1989).

    Article  Google Scholar 

  4. R. D. Doolittle, H. Überall, and P. Uginĉius, J. Acoust. Soc. Am. 43, 1 (1968).

    Article  Google Scholar 

  5. L. R. Dragonette, NRL Report 8216, (Naval Research Lab, Washington, DC 1978).

    Google Scholar 

  6. G. C. Gaunaurd and M. F. Werby, Am. Soc. Mech. Eng. 43, 171 (1990).

    Google Scholar 

  7. G. C. Gaunaurd and H. Überall, J. Acoust. Soc. Am. 78, 234 (1985).

    Article  Google Scholar 

  8. C. W. Horton and M. V. Mechler, J. Acoust. Soc. Am. 51, 295 (1972).

    Article  Google Scholar 

  9. P. Smith, J. Acoust. Soc. Am. 27, 1065 (1955).

    Article  Google Scholar 

  10. P. Uginĉius, Naval Weapons Lab, Tech. Report TR-2128 (1968).

    Google Scholar 

  11. I. Viktorov, Rayleigh and Lamb Waves (Plenum Press, New York, 1967).

    Google Scholar 

  12. G. Kaduchak and P. L. Martson, J. Acoust. Soc. Am. 98, 3501 (1995).

    Article  Google Scholar 

  13. C. F. Ying, in Physical Acoustics, Vol. XIX, pp. 291–343.(1990)

    Google Scholar 

  14. S. G. Solomon, H. Überall, and K. B. Yoo, Acustica 55, 147 (1984).

    Google Scholar 

  15. J. W. S Rayleigh, Theory of Sound(Dover, New York, 1945).

    Google Scholar 

  16. W. Sachse, J. Acoust. Soc. Am. 56, 891 (1974).

    Article  Google Scholar 

  17. W. Sachse and C. T. Chain, Mater. Eval. 33, 81 (1975).

    Google Scholar 

  18. W. Hassan and P.B. Nagy, J. Acoust. Soc. Am. (submitted for publication).

    Google Scholar 

  19. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover Publications, New York, 1972).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hassan, W., Nagy, P.B. (1997). Feasibility of Fatigue Crack Detection in Fluid-Filled Cylindrical Holes Using Circumferential Creeping Waves. In: Thompson, D.O., Chimenti, D.E. (eds) Review of Progress in Quantitative Nondestructive Evaluation. Review of Progress in Quantitative Nondestructive Evaluation, vol 16. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5947-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5947-4_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7725-2

  • Online ISBN: 978-1-4615-5947-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics