Skip to main content

Effects of Acid-Base Alterations and Protein Depletion on Hepatic Nitrogen Metabolism

  • Chapter
Advances in Cirrhosis, Hyperammonemia, and Hepatic Encephalopathy

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 420))

  • 147 Accesses

Abstract

An alteration in acid-base balance has wide-ranging effects on many systems in the body. It has long been recognized that acid-base regulation is linked to nitrogen metabolism. Ammonium (NH4 +), which is a constituent of normal urine, is excreted in greater quantities in metabolic acidosis. Earlier work showed that the rise in NH4 + excretion in acidosis coincided with a decrease in the rate of urea excretion. When it was realized that the enzyme urease was lacking in mammalian tissues, it was concluded that urea is not a direct source of urinary NH4 +. The discovery that the extraction of glutamine by the kidney contributed significantly to urinary NH4 + focused attention on the renal metabolism of glutamine. It is now well established that the extraction of glutamine by the kidney and the renal mitochondrial deamidation of glutamine are accelerated in chronic metabolic acidosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.E. Atkinson and M. Camien. The role of urea synthesis in the removal of metabolic bicarbonate and the regulation of blood pH. Curr. Top. Cell. Regul. 21:261–302 (1982).

    PubMed  CAS  Google Scholar 

  2. D.E. Atkinson and E. Bourke. The role of ureagenesis in pH homeostasis. Trends Biochem. Sci. 7:297–300 (1984).

    Article  Google Scholar 

  3. J. Oliver, A.M. Koelz, J. Costello, and E. Bourke. Acid-base alterations in glutamine metabolism and ureagenesis in perfused muscle and liver of the rat. Eur. J. Clin. Invest. 7:445–449 (1977).

    Article  PubMed  CAS  Google Scholar 

  4. D. Haussinger, H. Sies, and W. Gerok. Functional heterogeneity in ammonia metabolism. The intercellular glutamine cycle. J. Hepatol. 1:3–14 (1984).

    Article  Google Scholar 

  5. M. L. Halperin, C.B. Chen, S. Cheema-Dhadli, M.L. West, and R.L. Jungas. Is urea formation regulated primarily by acid-base balance in vivo? Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19):F605–F612 (1986).

    PubMed  CAS  Google Scholar 

  6. C. Lenzen, S. Soboll, H. Sies, and D. Haussinger. pH control of hepatic glutamine degradation. Role of transport. Eur. J. Biochem. 166:483–488 (1987).

    Article  PubMed  CAS  Google Scholar 

  7. L. Boon and A.J. Meijer. Control by pH of urea synthesis in isolated hepatocytes. Eur. J Biochem. 172:465–469, 1988.

    Article  PubMed  CAS  Google Scholar 

  8. B. Carey, C.W. Cheung, N.S. Cohen, S. Brusilow, and L. Raijman. Regulation of urea and citrulline synthesis under physiological conditions. Biochem. J. 292:241–247 (1993).

    CAS  Google Scholar 

  9. V. Felipo, M-D Minana, and S. Grisolia. Long-term ingestion of ammonium increases acetyl glutamate and urea levels without affecting the amount of carbamoyl-phosphate synthase. Eur. J. Biochem. 176:567–571 (1988).

    Article  PubMed  CAS  Google Scholar 

  10. H.E.S.J. Hensgens, A.J. Verhoeven, and A.J. Meijer. The relationship between intramitochondrial n-acetylglutamine activity and carbamoyl phosphate synthetase (ammonia). Eur. J. Biochem. 107:197–205 (1980).

    Article  PubMed  CAS  Google Scholar 

  11. K. Shigesada, K. Aoyagi, and M. Tatibana. Role of n-acetylglutamate in ureotelism. Variations in acetylglutamate level and its possible significance in control of urea synthesis in mammalian liver. Eur. J. Biochem. 85:385–391 (1978).

    Article  PubMed  CAS  Google Scholar 

  12. N.S. Cohen, S.W. Cheung, and L. Raijman. The effects of ornithine on mitochondrial carbamoyl phosphate synthesis. J. Biol. Chem. 255:10248–10255 (1980).

    PubMed  CAS  Google Scholar 

  13. V. Felipo, M-D Minana, and S. Grisolia. Control of urea synthesis and ammonia utilization in protein deprivation and refeeding. Arch. Biochem. Biophys. 285:351–356 (1991).

    Article  PubMed  CAS  Google Scholar 

  14. T. Saheki, M. Tsuda, T. Tanaka, and N. Katunuma. Analysis of regulatory factors for urea synthesis by isolated perfused rat liver. J Biochem. 77:671–678 (1975).

    PubMed  CAS  Google Scholar 

  15. T. Saheki, T. Katsunuma, and M. Sase. Regulation of urea synthesis in rat liver. Changes in ornithine and n-acetylglutamate concentration in the livers of rats subjected to dietary transitions. J. Biol. Chem. 237:459–468 (1977).

    Google Scholar 

  16. R.T. Schimke. Differential effects of fasting and protein-free diets on levels of urea cycle enzymes in rat liver. J. Biol. Chem. 237:1921–1924 (1962)

    PubMed  CAS  Google Scholar 

  17. R. Zaragosa, J. Renu-Piqueras, M. Portoles, J. Hernandez-Yago, A. Jorda, and S. Grisolia. Rats fed prolonged high protein diets show an increase in nitrogen metabolism and liver megamitochondria. Arch. Biochem. Biophys. 258:426–435 (1987).

    Article  Google Scholar 

  18. L. Boon, P.J.E. Blommaart, A.J. Meijer, W.H. Lamers, and A.C. Schoolwerth. Acute acidosis inhibits amino acid transport: no primary role for the urea cycle in acid-base balance. Am. J. Physiol. 267 (Renal Fluid Electrolyte Physiol. 36):F1015–F1020 (1994).

    PubMed  CAS  Google Scholar 

  19. L. Boon, P.J.E. Blommaart, A.J. Meijer, W.H. Lamers, and A.C. Schoolwerth. Response of hepatic amino acid consumption to chronic metabolic acidosis. Am. J. Physiol. 271 (Renal Fluid Electrolyte Physiol. 40):F198–F202 (1996).

    PubMed  CAS  Google Scholar 

  20. L. Boon, P.J.E. Blommaart, A.J. Meijer, W.H. Lamers, and A.C. Schoolwerth. Effect of chronic acidosis on hepatic amino acid uptake and gene regulation: implications for control of acid-base balance. Contr. Nephrol. 110:138–143 (1994).

    CAS  Google Scholar 

  21. T.C. Welbourne, D. Childress, and G. Givens. Renal regulation of interorgan glutamine flow in metabolic acidosis. Am. J. Physiol. 251 (Regulatory Integrative Comp. Physiol. 20):R858–R866 (1986).

    Google Scholar 

  22. R.C. May, R.A. Kelly, and W.E. Mitch. Metabolic acidosis stimulates protein degradation in rat muscle by a glucocorticoid dependent mechanism. J. Clin. Invest. 77:614–621 (1986).

    Article  PubMed  CAS  Google Scholar 

  23. R.C. May, T. Masud, B. Logue, J. Bailey, and B.K. England. Metabolic acidosis accelerates whole body protein degradation and leucine oxidation by a glucocorticoid dependent mechanism. Miner. Electrolyte Metab. 18:245–249 (1992).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Schoolwerth, A.C., O’Donovan, D.J. (1997). Effects of Acid-Base Alterations and Protein Depletion on Hepatic Nitrogen Metabolism. In: Felipo, V., Grisolía, S. (eds) Advances in Cirrhosis, Hyperammonemia, and Hepatic Encephalopathy. Advances in Experimental Medicine and Biology, vol 420. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5945-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5945-0_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7724-5

  • Online ISBN: 978-1-4615-5945-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics