Skip to main content

Polymeric Alloys: Model Materials for the Understanding of the Statistical Thermodynamics of Mixtures

  • Chapter
  • 502 Accesses

Abstract

Polymeric materials find industrial applications that are comparable to those of metals and ceramics.1 In addition to the great variability via the synthesis of various monomers and the choice of the degree of polymerization (N), alloying of polymers finds increasing attention for combining favorable materials properties.1,2 But polymeric (binary) alloys (A,B) of flexible polymers with chain lengths NA, NB are also most interesting for testing theoretical concepts: changing NA, NB one controls the entropy of mixing, keeping intermolecular forces invariant. Variation of these control parameters thus allows stringent tests of the theories on miscibility, unmixing etc. Furthermore, the large size of the random-walklike polymer coils (gyration radius \(\textup{R}_\textup{{gyr}} \approx \textup{a} \sqrt{\textup{N}/6}\) when a is the size of an effective statistical segment3) yields several simplifying features: (i) Rgyr enters as a prefactor in the correlation length ξ of concentration fluctuations, the width w of interfaces between coexisting phases near the critical point, the wavelength λmax of maximum growth during spinodal decomposition in unstable mixtures,4,5 etc. This larger length scale of cooperative phenomena allows the application of experimental techniques that would work for metallic alloys only in the immediate vicinity of the critical point.4–7 (ii) Large polymer coils are objects that also move only very slowly, and thus early stages of processes such as spinodal decomposition,4–6 dynamics of the formation of enrichment layers at surfaces7–9, etc. become easily accessible over a wide temperature range. (iii) Large polymer coils are rather loose, floppy objects (the monomer density ρ = N/V inside the volume taken by a coil, V ∝ Rgyr ∝ a3N3/2 scales as ρ ∝ a-3N-1/2 ). In order to have a melt density of order a-3, N1/2 coils interpenetrate each other: in other words, every coil interacts with3 N1/2 “neighbors”.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E.L. Thomas (ed.). Materials Science and Technology, Vol. 12: Structure and Properties of Polymers, VCH, Weinheim (1993).

    Google Scholar 

  2. D.S. Walsh, J.S. Higgins, and A. Maconnachie. Polymer Blends and Mixtures, Martinus Nijhoff, Dordrecht (1985).

    Book  Google Scholar 

  3. P.G. de Gennes. Scaling Concepts in Polymer Physics, Cornell Univ. Press, Ithaca (1979).

    Google Scholar 

  4. K. Binder, in: Materials Science and Technology, Vol. 5, Phase Transformations in Materials, VCH, Weinheim (1991) p. 405.

    Google Scholar 

  5. K. Binder, Advances Polymer Sci. 112:181 (1994).

    Article  Google Scholar 

  6. T. Hashimoto, in Ref. 1, p. 251.

    Google Scholar 

  7. U. Steiner, E. Eiser, J. Klein, A. Budkowski, and L. Fetters, Science 258:1126 (1992).

    Article  ADS  Google Scholar 

  8. R.A.L. Jones and E.J. Kramer, Phil. Mag. B62:129 (1990).

    Article  Google Scholar 

  9. K. Binder, Acta Polymer. 46:204 (1995).

    Article  Google Scholar 

  10. K. Binder, J. Chem. Phys. 79:6387 (1983).

    Article  ADS  Google Scholar 

  11. K. Binder, Phys. Rev. A29:341 (1984).

    ADS  Google Scholar 

  12. J.W. Calm and J.E. Hilliard, J. Chem. Phys. 28:258 (1958).

    Article  ADS  Google Scholar 

  13. J.W. Calm, Acta Metall. 9:795 (1961).

    Article  Google Scholar 

  14. H.E. Cook, Acta Metall. 18:297 (1970).

    Article  Google Scholar 

  15. F.S. Bates, and G.H. Fredrickson, Annu. Rev. Phys. Chem. 41:525 (1990).

    Article  ADS  Google Scholar 

  16. P.J. Flory, J. Chem. Phys. 9:660 (1941); M.L. Huggins, ibid 9:440 (1941).

    Article  ADS  Google Scholar 

  17. P.G. de Gennes, J. Chem. Phys. 72:4756 (1980).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. V.L. Ginzburg, Sov. Phys. Solid State 2:1824 (1960).

    MathSciNet  Google Scholar 

  19. M.A. Anisimov, S.B. Kiselev, J.V. Sengers, and S. Tang, Physica A188:487 (1992).

    ADS  Google Scholar 

  20. M.E. Fisher, Rev. Mod. Phys. 46:587 (1974).

    Article  ADS  Google Scholar 

  21. G. Meier, D. Schwann, K. Mortensen, and S. Janssen, Europhys. Lett. 22:577 (1993).

    Article  ADS  Google Scholar 

  22. H.-P. Deutsch and K. Binder, J. Phys. (Paris) 113:1049 (1993).

    Google Scholar 

  23. A. Sariban and K. Binder, J. Chem. Phys. 86:5859 (1987).

    Article  ADS  Google Scholar 

  24. H.-P. Deutsch and K. Binder, Macromolecules 25:6214 (1992).

    Article  ADS  Google Scholar 

  25. D. Schwahn, G. Meier, K. Mortensen, and S. Janssen, J. Phys. (Paris) 114:837 (1994).

    Google Scholar 

  26. J.F. Joanny and L. Leibler, J. Phys.(Paris) 39:951 (1978).

    Article  Google Scholar 

  27. J.W. Cahn and J.E. Hilliard, J. Chem. Phys. 31:688 (1959).

    Article  ADS  Google Scholar 

  28. W. Klein and C. Unger, Phys. Rev. B28:445 (1983).

    ADS  Google Scholar 

  29. F.S. Bates and P. Wiltzius, J. Chem. Phys. 91:3258 (1989).

    Article  ADS  Google Scholar 

  30. M. Müller and K. Binder, Macromolecules 28:1825 (1995).

    Article  ADS  Google Scholar 

  31. M. Müller and N.B. Wilding, Phys. Rev. E51:2079 (1995).

    ADS  Google Scholar 

  32. K.S. Schweizer and J.G. Curro, J. Chem. Phys. 94:3986 (1991).

    Article  ADS  Google Scholar 

  33. P. Holyst and T.A. Vilgis, J. Chem. Phys. 99:4835 (1993).

    Article  ADS  Google Scholar 

  34. N.B. Wilding, M. Müller and K. Binder, J. Chem. Phys. (1996, in press).

    Google Scholar 

  35. B. Widom, Physica A194:532 (1993).

    ADS  Google Scholar 

  36. I.C. Sanchez, J. Appl. Phys. 58:2871 (1985); J. Phys. Chem. 93:6983 (1989).

    Article  ADS  Google Scholar 

  37. E. Helfand and Y. Tagami, J. Chem. Phys. 56:3592 (1971); ibid. 57:1812 (1972).

    Article  ADS  Google Scholar 

  38. T. Kerle, J. Klein and K. Binder, preprint.

    Google Scholar 

  39. R.A.L. Jones, L.J. Norton, E.J. Kramer, F.S. Bates, and P. Wiltzius, Phys. Rev. Lett. 66:1326 (1991).

    Article  ADS  Google Scholar 

  40. G. Krausch, C.A. Dai, E.J. Kramer, and F.S. Bates, Phys. Rev. Lett. 71:3669 (1993).

    Article  ADS  Google Scholar 

  41. S. Puri and K. Binder, Phys. Rev. A46:R4487 (1992).

    ADS  Google Scholar 

  42. H.L. Frisch, P. Nielaba, and K. Binder, Phys.Rev. E52:2848 (1995).

    ADS  Google Scholar 

  43. J.W. Cahn, J. Chem. Phys. 66:366 (1977).

    Article  Google Scholar 

  44. I. Schmidt and K. Binder, J. Phys. (Paris) 46:1631 (1985).

    Article  Google Scholar 

  45. M. Müller, K. Binder and W. Oed, J. Chem. Soc. Faraday Trans. 91:2369 (1995).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Binder, K., Müller, M., Wilding, N.B. (1997). Polymeric Alloys: Model Materials for the Understanding of the Statistical Thermodynamics of Mixtures. In: Gonis, A., Meike, A., Turchi, P.E.A. (eds) Properties of Complex Inorganic Solids. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5943-6_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5943-6_26

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7723-8

  • Online ISBN: 978-1-4615-5943-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics