Skip to main content

Testing the Climatic Effects of Orography and CO2 with General Circulation and Biome Models

  • Chapter
Tectonic Uplift and Climate Change

Abstract

Uplift of large-scale plateau orography has been proposed as a forcing function of long-term climate, both because it can alter the large-scale circulation of the atmosphEre,1–2 and because it may influence chemical weathering and thus atmospheric CO2 levels.3 These hypotheses suggest that much of the major climatic change of the last 40 million years could result from uplift in southern Asia and elsewhere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ruddiman, W. F., and Kutzbach, J. E. (1989). J. Geophys. Res. 94, p. 18409.

    Article  Google Scholar 

  2. Ruddiman, W. F., and Kutzbach, J. E. (1991). Sci. Amer. 264, p. 66.

    Article  Google Scholar 

  3. Raymo, M. E., Ruddiman, W. F., and Froelich, P. N. (1988). Geology 16, p. 649.

    Article  Google Scholar 

  4. Sloan, L. C., and Barron, E. J. (1992). Palaeogeogr., Palaeoclim., Palaeoecol. 93, p. 183.

    Article  Google Scholar 

  5. Sloan, L. C. (1994). Geology 22, p. 881.

    Article  Google Scholar 

  6. Thompson, R. S., and Fleming, R. F. (1996). Mar. Micropal. 27, p. 27.

    Article  Google Scholar 

  7. Sloan, E. L., Crowley, T. J., and Pollard, D. (1996). Mar. Micropal. 27, p. 51.

    Article  Google Scholar 

  8. Prentice, I. C., Cramer, W., Harrison, S. P., Leeman, R., Monserud, R. A., and Solomon, A. M. (1992). J. Biogeogr. 19, p. 117.

    Article  Google Scholar 

  9. Box, E. O. (1981). Macroclimate and Plant Forms: An Introduction to Predictive Modelling in Phytogeography. Junk, The Hague.

    Google Scholar 

  10. Woodward, F. I. (1987). Climate and Plant Distribution. Cambridge University Press, Cambridge.

    Google Scholar 

  11. Koppen, W. (1936). Das geographisches system der Klimate: In: Handbuch der Klimatologie I(C) (W. Koppen and R. Geiger, eds.). Gebruder Borntraeger, Berlin.

    Google Scholar 

  12. Holdridge, L. R. (1947). Science 105, p. 367.

    Article  Google Scholar 

  13. Davis, M. B. (1989). Bull. Ecol. Soc. Am. 70, p. 222.

    Google Scholar 

  14. Haxeltine, A., and Prentice, I. C. (1996). Global Geochemical Cycles 10, p. 693.

    Article  Google Scholar 

  15. Prentice, I. C., Sykes, M. T., Lautenschlager, M., Harrison, S. P., Denissenko, O., and Bartlein, P. J. (1993). Global Ecol. Biogeogr. Lett. p. 67.

    Google Scholar 

  16. Randel, W. J., and Williamson, D. I. (1990). J. Clim. 3, p. 608.

    Article  Google Scholar 

  17. Covey, C., and Thompson, S. L. (1989). Palaeogoegr. Palaeoclimat. Palaeoecol. 75, p. 331.

    Article  Google Scholar 

  18. Ruddiman, W. F., Prell, W. L., and Raymo, M. E. (1989). J. Geophys. Res. 94, p. 18379.

    Article  Google Scholar 

  19. Kutzbach, J. E, Prell, W. L., and Ruddiman, W. F. (1993). J. Geol. 101, p. 177.

    Article  Google Scholar 

  20. Ogelsby, R. J., and Saltzman, B. S. (1992). J. Clim. 5, p. 66.

    Article  Google Scholar 

  21. Molnar, P., and England, P. (1990). Nature 346, p. 29.

    Article  Google Scholar 

  22. Cochran, J, Stow, D. A. V. et al. (1989). Initial Reports, Ocean Drilling Program, Leg 116, 388 pp., U.S. Government Printing Office, Washington, D.C.

    Google Scholar 

  23. Prell, W. L., and Kutzbach, J. E. (1993). Nature 360, p. 647.

    Article  Google Scholar 

  24. Baker, B. H., and Wohlenberg, J. (1971). Nature 229, p. 538.

    Article  Google Scholar 

  25. Coney, P. J, and Harms, T. A. (1984). Geology 12, p. 550.

    Article  Google Scholar 

  26. Pierce, K. L., and Morgan, L. A. (1992). In: Regional Geology of Eastern Idaho and Western Wyoming (P. K. Link, M. A. Kuntz, and L. B. Platt, eds.). Geological Society of America, Boulder, 179, pp. 1–53.

    Google Scholar 

  27. Huber, N. K. (1981). U.S. Geol Sun. Prof. Paper 1197, p. 1.

    Google Scholar 

  28. Lucchitta, I. (1979). Tectonophysics 61, p. 63.

    Article  Google Scholar 

  29. Jansen, E., and Sjoholm, J. (1991). Nature 349, p. 600.

    Article  Google Scholar 

  30. Isacks, B. L. (1988). J. Geophys. Res. 93, p. 3211.

    Article  Google Scholar 

  31. Westaway, R. (1993). Earth Planet Sci. Lett. 119, p. 331.

    Article  Google Scholar 

  32. Arthur, M. A. (1991). In: Advisory Report on Earth System History (G. S. Mountain and M. E. Katz, eds.). Natural Science Foundation Division of Ocean Studies, Washington, D.C., pp. 51–74.

    Google Scholar 

  33. Freeman, K. H., and Hayes, J. M. (1992). Global Biogeochem. Cycles 6, p. 185.

    Article  Google Scholar 

  34. Laws, E. A., Popp, B. N., Bidigare, R. B., Kennicutt, M. C., and Macko, S. A. (1995). Geochim. et Cosmochim. Acta 59, p. 1131.

    Article  Google Scholar 

  35. Cerling, T. E., Wang, Y., and Quade, J. (1993). Nature 361, p. 344.

    Article  Google Scholar 

  36. Wolfe, J. A. (1985). In: The Carbon Cycle and Atmospheric CO 2: Natural Variations Archean to Present (E. T. Sundquist and W. S. Broecker, eds.), Geophysics Monograph Series., Vol. 32, AGU, Washington, D.C., pp. 357–375.

    Google Scholar 

  37. Mathews, J. V., and Ovendon, L. E. (1990). Arctic 43, p. 364.

    Google Scholar 

  38. Kutzbach, J. E., Guetter, P. J., Ruddiman, W. F., and Prell, W. L. (1989). J. Geophys. Res. 94, p. 18393.

    Article  Google Scholar 

  39. Raymo, M. E., Rind, D., and Ruddiman, W. F. (1990). Paleoceanography 5, p. 367.

    Article  Google Scholar 

  40. Schlesinger, M. E., and Mitchell, J. F. B. (1987). Rev. Geophys. 25, p. 760.

    Article  Google Scholar 

  41. Birchfield, G. E., Weertman, J., and Lunde, A. T. (1983). Science 202, p. 305.

    Google Scholar 

  42. Whitlock, C., and Dawson, M. R. (1990). Arctic 43, p. 324.

    Google Scholar 

  43. Wolfe, J. A. (1994). Palaeogeogr. Palaeoclim. Palaeoecol. 108, p. 207.

    Article  Google Scholar 

  44. Liu, G., and Leopold, E. B. (1994). Palaeogeogr. Palaeoclim. Palaeoecol. 108, p. 217.

    Article  Google Scholar 

  45. Brigham-Grette, J., and Carter, L. D. (1992). Arctic 45, p. 74.

    Google Scholar 

  46. Sher, A. V., Kaplina, T. N., Giterman, R. E., Lozhkin, A. V., Arkhangelov, A. A., Kiselyov, S. V., Kouznetsov, Y. V., Virina, E. I., and Zazhigin, V. S. (1979). In: 14th Pacific Scientific Congress Excursion 11 Guidebook. Akad. Nauk. SSR, Moscow. 115 pp.

    Google Scholar 

  47. Willard, D. A. (1994). Rev. Paleobot. Palynol. 83, p. 275.

    Article  Google Scholar 

  48. Thompson, R. S, and Fleming, R. F. (1996). Mar. Micropal. 27, p. 27.

    Article  Google Scholar 

  49. Dowsett, H., Barron, J., and Poore, R. Z. (1996). Mar. Micropal. 27, p. 13.

    Article  Google Scholar 

  50. Armentrout, J. M. (1983). In: Glacial Marine Sedimentation (B. F. Molnia, ed.). Plenum, New York, pp. 629–66

    Chapter  Google Scholar 

  51. Mercer, J. H., and Sutter, J. (1981). Palaeogeogr. Palaeoclim. Palaeoecol. 38, p. 185.

    Article  Google Scholar 

  52. Bonan, G. B., Pollard, D., and Thompson, S. L. (1992). Nature 359, p. 716.

    Article  Google Scholar 

  53. Foley, J. A., Kutzbach, J. E., Coe, M. T., and Levis, S. (1994). Nature 371, p. 52.

    Article  Google Scholar 

  54. Gallimore, R. G., and Kutzbach, J. E. (1996). Nature 381, p. 503. Note added in proof: Recent work indicates that this effect may have been as large as 5°C across broad regions of Northern Asia and North America [Dutton, J. F., and Barron, E. J. (1997). Geology 25, p. 39].

    Article  Google Scholar 

  55. Mercier, J.-L., Armijo, R., Tapponier, P., Covey-Gailhardis, E., and Tonglin, H. (1987). Tectonics 6, p. 275.

    Article  Google Scholar 

  56. Traverse, A. (1982). Alcheringa 6, p. 197.

    Article  Google Scholar 

  57. Axelrod, D. I., and Raven, P. H. (1978). In: Biogeography and Ecology of South Africa (M. J. A. Wager, ed.), pp. 77–130. Junk, The Hague.

    Chapter  Google Scholar 

  58. Bonnefile, R., Vincens, A., and Buchet, G. (1987). Palaeogeogr. Palaeoclim. Palaeoecol. 60, p. 249.

    Article  Google Scholar 

  59. Leroy, S., and Dupont, L. (1994). Palaeogeogr. Palaeoclim. Palaeoecol. 109, p. 295.

    Article  Google Scholar 

  60. Quade, J., Cerling, T. E., and Bowman, J. R. (1989). Nature 342, p. 163.

    Article  Google Scholar 

  61. Cerling, T. E., Bowman, J. R., and O’Neill, J. R. (1988). Palaeogeogr. Palaeoclim. Palaeoecol. 63, p. 335.

    Article  Google Scholar 

  62. Tanai, T. (1961). J. Fac. Sci. Hokkaido Univ. 11, p. 119.

    Google Scholar 

  63. Chaney, R. W., and Chuang, G. C. (1968). Geol. Soc. China II, p. 3.

    Google Scholar 

  64. Chaney, R. W., and Elias, M. K. (1936). Carnegie Inst. Wash. Publ. 476, p. 1–72.

    Google Scholar 

  65. Thomasson, J. R. (1979). Kansas Geol. Surv. Bull. 218, p. 1-67.

    Google Scholar 

  66. Axelrod, D. I. (1985). Botan. Rev. 51, p. 164.

    Article  Google Scholar 

  67. Wang, Y., Cerling, T. E., and Mcfadden, B. J. (1994). Palaeogeogr. Palaeoclim. Palaeoecol. 107, p. 269.

    Article  Google Scholar 

  68. Wing, S. L., and Greenwood, D. R. (1993). Phil. Trans. R Soc, Lond. Ser. B 341, p. 243.

    Article  Google Scholar 

  69. Dowsett, H. J., Cronin, T. M., Poore, R. Z., Rhompson, R. S., Whatley, R. C., and Wood, A. M. (1992). Science 258, p. 1133.

    Article  Google Scholar 

  70. Raymo, M. E., Grant, B., Horowitz, M., and Rau, G. H. (1996). Mar. Micropal. 27, p. 313.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ruddiman, W.F., Kutzbach, J.E., Prentice, I.C. (1997). Testing the Climatic Effects of Orography and CO2 with General Circulation and Biome Models. In: Ruddiman, W.F. (eds) Tectonic Uplift and Climate Change. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5935-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5935-1_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7719-1

  • Online ISBN: 978-1-4615-5935-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics